• 제목/요약/키워드: Stiffness-Based Optimization

Search Result 193, Processing Time 0.037 seconds

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

Size Optimization Design Based on Maximum Stiffness for Structures (구조물의 최대강성 치수최적설계)

  • Shin, Soo-Mi;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • This study presents a structural design optimizing sizes of high-rise steel plane truss members by maximizing stiffness subjected to given volume constraints. The sizing optimum design is evaluated by using a well-known optimality criteria (OC) of gradient-based optimization methods. In typical size optimization methods, truss structures are optimized with respect to minimum weight with constraints on the value of some displacement and on the member stresses. The proposed method is an inversed size optimization process in comparisons with the typical size optimization methods since it maximizes stiffness associated with stresses or displacements subjected to volume constraints related to weight. The inversed approach is another alternative to classical size optimization methods in order to optimize members' sizes in truss structures. Numerical applications of a round shape steel pipe truss structure are studied to verify that the proposed maximum stiffness-based size optimization design is suitable for optimally developing truss members's sizes.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

Ground Beam Structure Based Joint Stiffness Controlling Method for Compliant Mechanisms (컴플라이언트 메커니즘 설계를 위한 바닥 보 구조 기반 조인트 강성 조절법)

  • Jang Gang-Won;Kim Yoon-Young;Kim Myung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1187-1193
    • /
    • 2006
  • Traditionally, the continuum-based topology optimization methods employing the SIMP technique have been used to design compliant mechanisms. Although they have been successful, the optimized mechanisms by the methods are usually difficult to manufacture because of their geometrical complexities. The objective of this study is to develop a topology optimization method that can produce easy-to-fabricate mechanism structure. The proposed method is a ground beam method where beam connectivity is controlled by the beam joint stiffness. In this approach, beam joint stiffness determines the mechanism configuration. Because b the ground structure beams have uniform thicknesses varying only discretely, the resulting mechanism topologies become easily manufacturable.

Theoretical rotational stiffness of the flexible base connection based on parametric study via the whale optimization algorithm

  • Mahmoud T. Nawar;Ehab B. Matar;Hassan M. Maaly;Ahmed G. Alaaser;Osman Hamdy
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • This paper handles the results of an extensive parametric study on the rotational stiffness of the flexible base connection using ABAQUS program. The results of the parametric study show the relation between the applied moment and the relative rotation for 96 different base connections. The configurations of the studied connections considered different numbers, diameters, and spacing of the anchor bolts along with different thicknesses of the base plate to investigate the effect of these parameters on the rotational stiffness behavior. The results of the previous parametric research used through the whale optimization algorithm (WOA) to detect different equation formulation of the moment-rotation (M-Ɵr) equation to detect optimum equation simulates the general nonlinear rotational behavior of the flexible base connection considering all variables used in the parametric study. WOA is a relatively new promising algorithm, which is used in different types of optimization problems. For more verification, the classical genetic algorithm (GA) is used to make a comparison with WOA results. The results show that WOA is capable of getting an optimum equation of the M-Ɵr relation, which can be used to simulate the actual rotational stiffness of the flexible base connections. The rotational stiffness at H/150 can be calculated using WOA (1) method and be used as a design aid for engineering design.

Topology Optimization of the Inner Reinforcement of a Vehicle's Hood using Reliability Analysis (신뢰성 해석을 이용한 차량 후드 보강재의 위상최적화)

  • Park, Jae-Yong;Im, Min-Kyu;Oh, Young-Kyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.691-697
    • /
    • 2010
  • Reliability-based topology optimization (RBTO) is to get an optimal topology satisfying uncertainties of design variables. In this study, reliability-based topology optimization method is applied to the inner reinforcement of vehicle's hood based on BESO. A multi-objective topology optimization technique was implemented to obtain optimal topology of the inner reinforcement of the hood. considering the static stiffness of bending and torsion as well as natural frequency. Performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. To evaluate the obtained optimal topology by RBTO, it is compared with that of DTO of the inner reinforcement of the hood. It is found that the more suitable topology is obtained through RBTO than DTO even though the final volume of RBTO is a little bit larger than that of DTO. From the result, multiobjective optimization technique based on the BESO can be applied very effectively in topology optimization for vehicle's hood reinforcement considering the static stiffness of bending and torsion as well as natural frequency.

Ground Beam-Joint Topology Optimization for Design and Assembly of Multi-Piece Frame Structures (그라운드 빔 조인트 기반 위상최적화법을 이용한 프레임 구조물의 조립 위치 및 강도 설정)

  • Jang, Gang-Won;Kim, Myeong-Jin;Kim, Yun-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.688-693
    • /
    • 2007
  • Most frame structures cannot be manufactured in a single-piece form. Ideally, when a structure is built up by assembling multi pieces, assembly at the joints should be rigidly performed enough to have almost full stiffness, which is difficult for practical reasons such as manufacturing cost and time. In this research, we aim to develop a manufacturability-oriented compliance-minimizing topology optimization using a ground beam model incorporating additional zero-length elastic joint elements. In the present formulation, design variables control the stiffness of zero-length elastic joints, not the stiffness of beams. Because joint stiffness values at the converged state can be utilized to select candidate assembly locations and their strengths, the technique is extremely useful to design multi-piece frame structures. An optimal layout is also extracted based on the stiffness values.

  • PDF

Genetic-Based Combinatorial Optimization Method for Design of Rolling Element Bearing (구름 베어링 설계를 위한 유전 알고리듬 기반 조합형 최적설계 방법)

  • 윤기찬;최동훈;박창남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.166-171
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design for the application-based exclusive rolling element bearings, this study propose design methodologies by using a genetic-based combinatorial optimization. By the presence of discrete variables such as the number of rolling element (standard component) and by the engineering point of views, the design problem of the rolling element bearing can be characterized by the combinatorial optimization problem as a fully discrete optimization. A genetic algorithm is used to efficiently find a set of the optimum discrete design values from the pre-defined variable sets. To effectively deal with the design constraints and the multi-objective problem, a ranking penalty method is suggested for constructing a fitness function in the genetic-based combinatorial optimization. To evaluate the proposed design method, a robust performance analyzer of ball bearing based on quasi-static analysis is developed and the computer program is applied to some design problems, 1) maximize fatigue life, 2) maximize stiffness, 3) maximize fatigue life and stiffness, of a angular contact ball bearing. Optimum design results are demonstrate the effectiveness of the design method suggested in this study. It believed that the proposed methodologies can be effectively applied to other multi-objective discrete optimization problems.

  • PDF