• 제목/요약/키워드: Stiffness Optimization

검색결과 517건 처리시간 0.028초

구조물의 최대강성 치수최적설계 (Size Optimization Design Based on Maximum Stiffness for Structures)

  • 신수미;박현정
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.65-72
    • /
    • 2009
  • 본 연구는 주어진 부피제약조건 하에서 최대강성을 구현하는 고층 철골 트러스 시스템의 단면치수 재조정 프로세스를 보여준다. 이러한 치수최적설계는 경사도법에 근거한 최적정 방법에 의해 수치적으로 연산된다. 전형적인 치수최적설계에서는 변위나 응력제약조건 하에서 구조물의 최소중량을 구현하지만, 본 연구에서 소개되는 치수최적설계는 이것과 반대의 프로세스를 가진다. 즉, 부피와 같은 재료제약조건 하에서 최대강성을 구현한다. 본 연구는 기존의 치수최적설계방법의 대안으로서 그 의미를 가질 수 있다. 고층 철골트러스 구조시스템의 수치 예제를 통하여 부재 단면치수 재조정 설계가 기존의 최소중량설계와 반대인 최대강성 이산화 치수최적설계를 통하여 적합하게 수행됨이 증명되었다.

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • 제27권6호
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

저속차량 차체의 구조해석 및 구조최적설계 (Structural Analysis and Optimization of a Low Speed Vehicle Body)

  • 신정규;심진욱;황상진;박경진
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.68-78
    • /
    • 2003
  • Recently, low speed vehicle (LSV) is beginning to appear for various usages. The body of the LSV is usually made of the aluminum space frame (ASF) type rather than the monocoque or unitary construction type. A pa.1 of the reason is that it is easier to reduce mass efficiently while the required stiffness and strength are maintained. A design flow for LSV is proposed. Design specifications for structural performances of LSV do not exist yet. Therefore, they are defined through a comparative study with general passenger automobiles. An optimization problem is formulated by the defined specifications. At first, one pillar which has an important role in structural performances is selected and the reinforcements of the pillar are determined from topology optimization to maximize the stiffness. At second, the thicknesses of cross sections are determined to minimize the mass of the body while design specifications are satisfied. The optimum solution is compared with an existing design. The optimization process has been performed using a commercial optimization software system, GENESIS 7.0.

그라운드 빔 조인트 기반 위상최적화법을 이용한 프레임 구조물의 조립 위치 및 강도 설정 (Ground Beam-Joint Topology Optimization for Design and Assembly of Multi-Piece Frame Structures)

  • 장강원;김명진;김윤영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.688-693
    • /
    • 2007
  • Most frame structures cannot be manufactured in a single-piece form. Ideally, when a structure is built up by assembling multi pieces, assembly at the joints should be rigidly performed enough to have almost full stiffness, which is difficult for practical reasons such as manufacturing cost and time. In this research, we aim to develop a manufacturability-oriented compliance-minimizing topology optimization using a ground beam model incorporating additional zero-length elastic joint elements. In the present formulation, design variables control the stiffness of zero-length elastic joints, not the stiffness of beams. Because joint stiffness values at the converged state can be utilized to select candidate assembly locations and their strengths, the technique is extremely useful to design multi-piece frame structures. An optimal layout is also extracted based on the stiffness values.

  • PDF

연삭기용 유정압베어링주축의 최적화에 관한 연구 (The Optimization of a Hydrostatic Spindle System for Grinding Machines)

  • Lee, C.H.;Park, C.H.;Lee, H.S.
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.140-147
    • /
    • 1996
  • Machining accuracy of machine tools spindles using the hydrostatic bearing, largely depends on the static stiffness and the thermal deformation of the spindle unit. In this paper, the modelling and static, thermal analysis of the hydrostatic spindles were performed for the relationship between the design variables like the bearing span, overhang, bearing stiffness and static stiffness at spindle. The goal of optimization is the mazimum, static stiffness at spindle nose with lower temperature rise in hydrostatic bearing. Temperature rise of hydrostatic bearing is minimized with the variables of spindle diameter and oil supply pressure. Finally, validity of the proposed algorithm is verified by improving the static, thermal performance of the existing hydrostatic spindles.

  • PDF

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

컴플라이언트 메커니즘을 이용한 스윙 암 액추에이터의 설계 - 강성 효과를 고려한 다중목적 최적화 설계 - (Design of a Swing-arm Actuator using the Compliant Mechanism - Multi-objective Optimal Design Considering the Stiffness Effect)

  • 이충용;민승재;유정훈
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.128-134
    • /
    • 2006
  • Topology optimization is an effective scheme to obtain the initial design concept: however, it is hard to apply in case of non-linear or multi-objective problems. In this study, a modified topology optimization method is proposed to generate a structure of a swing arm type actuator satisfying maximum compliance as well. as maximum stiffness using the multi-objective optimization. approach. The multi-objective function is defined to maximize the compliance in the direction of focusing of the actuator and the second eigen-frequency of the structure. The design of experiments are performed and the response surface functions are formulated to construct the multi-objective function. The weighting factors between conflicting functions are determined by the back-error propagation neural network and the solution of multi-objective function is acquired using the genetic algorithm.

CAE를 응용한 차체강성 최적화에 관한 연구 (An Study of Optimization on Vehicle Body Stiffness using CAE Application)

  • 최명진;송명준;장승호
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.129-134
    • /
    • 2001
  • One of the most important purposes in the design of machines and structures is to produce the most light products of the lowest price with satisfying function and performance. In this study, a scheme of design optimization for the weight down of vehicle body structure is presented. Design sensitivity of vehicle body structure is investigated and design optimization is performed to get weight down with the allowable stiffness of body in white. Stress, deformation and natural frequencies are the constraint of the optimization.

  • PDF

Optimization of ride comfort for a three-axle vehicle equipped with interconnected hydro-pneumatic suspension system

  • Saglam, Ferhat;Unlusoy, Y. Samim
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.1-20
    • /
    • 2018
  • The aim of this study is the optimization of the parameters of interconnected Hydro-Pneumatic (HP) suspension system of a three-axle vehicle for ride comfort and handling. For HP suspension systems of equivalent vertical stiffness and damping characteristics, interconnected HP suspension systems increase roll and pitch stiffness and damping characteristics of the vehicle as compared to unconnected HP suspension systems. Thus, they result in improved handling and braking/acceleration performances of the vehicle. However, increased roll and pitch stiffness and damping characteristics also increase roll and pitch accelerations, which in turn result in degraded ride comfort performance. Therefore, in order to improve both ride comfort and vehicle handling performances simultaneously, an optimum parameter set of an interconnected HP suspension system is obtained through an optimization procedure. The objective function is formed as the sum of the weighted vertical accelerations according to ISO 2631. The roll angle, one of the important measures of vehicle handling and driving safety, is imposed as a constraint in the optimization study. Upper and lower parameter bounds are used in the optimization in order to get a physically realizable parameter set. Optimization procedure is implemented for a three-axle vehicle with unconnected and interconnected suspension systems separately. Optimization results show that interconnected HP suspension system results in improvements in both ride comfort and vehicle handling performance, as compared to the unconnected suspension system. As a result, interconnected HP suspension systems present a solution to the conflict between ride comfort and vehicle handling which is present in unconnected suspension systems.

경량화를 위한 RBFr 메타모델 기반 A-필러와 패키지 트레이의 소재 선정 최적화 (Material Selection Optimization of A-Pillar and Package Tray Using RBFr Metamodel for Minimizing Weight)

  • 진성완;박도현;이갑성;김창원;양희원;김대승;최동훈
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, we propose the method of optimally selecting material of front pillar (A-pillar) and package tray for minimizing weight while satisfying vehicle requirements on static stiffness and dynamic stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness and dynamic stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the radial basis function regression (RBFr). Using the RBFr models, optimization is carried out an evolutionary algorithm that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 49.8% while satisfying all the design constraints.