• 제목/요약/키워드: Stiffness Modulus

검색결과 486건 처리시간 0.025초

Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life

  • Gorski, Piotr;Stankiewicz, Beata;Tatara, Marcin
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.527-544
    • /
    • 2018
  • The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

다짐된 궤도 흙노반 재료의 전단탄성계수(G)-전단변형률(γ)-포화도(S) 관계특성 분석 (Analysis of Shear Modulus(G)-Shear Strain(γ)-Degree of Saturation(S) Characteristics of Compacted Subgrade Soil used as Railway Trackbed)

  • 최찬용;이성혁;임유진;김대성;박재범
    • 한국철도학회논문집
    • /
    • 제18권2호
    • /
    • pp.127-138
    • /
    • 2015
  • 본 연구에서는 국내 철도 궤도하부 다져진 흙노반의 강성 평가를 위하여 Stokoe 방식의 고정단-자유단 중형 공진주 시험기(D=10cm, L=20cm)를 이용, 구속압 및 전단변형률 증가시 포화도(S)변화에 따른 전단탄성계수의 분포변화를 조사, 분석하였다. 분석결과 포화도가 증가할수록 최대전단탄성계수는 감소하고 정규화 전단탄성계수는 증가하는 경향을 보였다. 분석결과를 바탕으로 포화도(S)~전단탄성계수(S)~전단변형률(${\gamma}$) 사이의 고유한 감소 관계특성을 관찰할 수 있었다. 이러한 특성수립 가능성을 기반으로 향후 광범위한 추가시험을 통하여 예측모델을 수립하고 소정의 모델계수 값들을 획득할 수 있을 것이다.

강도가 제어된 인공피부 진피를 활용한 기능성 펩타이드의 프로콜라겐 생합성 분석 (Analysis of Procollagen Biosynthesis of Functional Peptides Utilizing Stiffness Controlled Artificial Skin Dermis)

  • 변진아;신성규;한사라;조성우;임준우;정재현
    • 대한화장품학회지
    • /
    • 제44권4호
    • /
    • pp.419-425
    • /
    • 2018
  • 본 연구에서는 가교 분자를 사용하여 0.7 kPa에서 17.7 kPa까지 다양한 강도를 갖는 콜라겐 겔을 성공적으로 제조하였다. 가교된 콜라겐 겔에 다공성 기공을 도입하고 진피세포를 내부에 담지하여, 겔 강도에 따른 세포 성장 및 거동을 확인하였다. 상대적으로 강도가 높은 겔에서 진피세포의 프로콜라겐 생합성이 47 ng에서 32 ng까지 감소하는 것을 확인하였다. 이렇게 제조된 인공피부 진피에 아데노신을 처리하였을 때, 특정 강도를 갖는 콜라겐 겔에서 프로콜라겐 생합성이 감소하는 것을 확인하였다. 반면에 기능성 펩타이드를 처리하였을 때는 프로콜라겐 생합성이 콜라겐 겔의 강도에 크게 영향을 받지 않는 것을 확인할 수 있었다. 이러한 결과는 강도가 제어된 인공피부 제조 및 응용, 나아가 다양한 조직공학 분야의 기반 기술로 활용 가능하리라 기대된다.

Analytical solution for natural frequency of monopile supported wind turbine towers

  • Rong, Xue-Ning;Xu, Ri-Qing;Wang, Heng-Yu;Feng, Su-Yang
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.459-474
    • /
    • 2017
  • In this study an analytical expression is derived for the natural frequency of the wind turbine towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained from numerical or empirical method. The new expression is based on pure physical parameters and thus can be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. The results of the proposed expression are compared with the measured frequencies of six real or model turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed which might be attributed to the difference between the dynamic and static modulus of saturated soils. The proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical and the empirical formulas available in the literature.

전개형 경량 위성 안테나 반사판의 재료분석 및 형상 최적화 (Material Analysis and Shape Optimization of a Deployable Lightweight Satellite Antenna Reflector)

  • 곽도혁;정화영;이재은;강광희
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.185-192
    • /
    • 2017
  • In this paper, we reviewed major design parameters for a solid type of deployable antenna and its structural design. We performed modal analysis for a single reflector panel made of aluminum and CFRP (carbon fiber reinforced plastic) to confirm the appropriateness of selected materials. We then predicted the elastic modulus of CFRP using the principles of unidirectional composite elasticity stiffness predictions such as the ROM (Rule of Mixture) and HSR (Hart Smith 10% Rule). To optimize the shape of the antenna reflector, a structural stiffness analysis was performed using derived numerical optimization factors. Six structural stiffness analyses were performed using the constructed experimental design method. The resulting optimal shape conditions are proposed to meet the structural stiffness requirements while minimizing weight.

Nonlinear analysis of cable-stayed spatial latticed structures

  • Zhou, Dai;Liu, Hongyu;Jin, Bo
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.415-436
    • /
    • 2003
  • The combination of spatial latticed structures (hereafter SLS) and flexible cables, the cable-stayed spatial latticed structures (hereafter CSLS) can cross longer span. According to variation principle, a novel geometric nonlinear formulation for 3-D bar elements considering large displacement and infinitesimal rotation increments with second-order precision is developed. The cable nonlinearity is investigated and it is taken that the secant modulus method can be considered as an exact method for a cable member. The tower column with which the cables link is regarded as a special kind of beam element, and, a new simplified stiffness formulation is presented. The computational strategies for the nonlinear dynamic response of structures are given, and the ultimate load carrying capacities and seismic responses are analyzed numerically. It is noted that, compared with corresponding spatial latticed shells, the cable-stayed spatial latticed shells have more strength and more stiffness, and that the verical seismic responses of both CSLS and CLS are remarkably greater than the horizontal ones. In addition, the computation shows that the stiffness of tower column influences the performance of CSLS to a certain extent and the improvement of structural strength and stiffness of CSLS is relevant not only to cables but also to tower columns.

Wood Flour 폴리프로필렌 복합재료의 기계적 특성: 반복적 온도 변화의 영향 (Mechanical Properties of Wood Flour Polypropylene Composites: Effect of Cycled Temperature Change)

  • 이선영;전상진;도금현;박상범;최수임
    • Elastomers and Composites
    • /
    • 제46권3호
    • /
    • pp.218-222
    • /
    • 2011
  • 본 연구에서는 반복적인 온도변화가 목분(50 wt.%와 70 wt.%)이 첨가된 폴리프로필렌 WPC(Wood Plastic Composites)의 기계적 특성에 미치는 영향을 조사하였다. WPC의 휨탄성계수(flexural modulus)와 휨강도 (flexural strength)는 반복 회수에 상관없이 동결 융해 시험에서 계면접착력의 약화 때문에 감소하는 경향을 보였다. 목분의 함량이 높을 때, 휨탄성계수의 감소가 비교적 높았다. WPC의 휨탄성계수와 휨강도는 고온($60^{\circ}C$) 저온 ($-20^{\circ}C$) 반복시험 후 고온에서 감소하고 저온에서 증가되었다. 폴리프로필렌(polypropylene, PP)의 유리전이점 (glass transition temperature: $-10^{\circ}C$) 보다 낮은 저온($-20^{\circ}C$에서 WPC는 높은 강성(stiffness)과 강도 (strength)를 유발시키는 유리상태(glassy state)로 존재한다. 고온에서 목분의 함량이 낮은 WPC가 연성의 증가 때문에 낮은 휨탄성계수와 휨강도를 보였다.

Effect of Bone Cement Volume and Stiffness on Occurrences of Adjacent Vertebral Fractures after Vertebroplasty

  • Kim, Jin-Myung;Shin, Dong Ah;Byun, Dong-Hak;Kim, Hyung-Sun;Kim, Sohee;Kim, Hyoung-Ihl
    • Journal of Korean Neurosurgical Society
    • /
    • 제52권5호
    • /
    • pp.435-440
    • /
    • 2012
  • Objective : The purpose of this study is to find the optimal stiffness and volume of bone cement and their biomechanical effects on the adjacent vertebrae to determine a better strategy for conducting vertebroplasty. Methods : A three-dimensional finite-element model of a functional spinal unit was developed using computed tomography scans of a normal motion segment, comprising the T11, T12 and L1 vertebrae. Volumes of bone cement, with appropriate mechanical properties, were inserted into the trabecular core of the T12 vertebra. Parametric studies were done by varying the volume and stiffness of the bone cement. Results : When the bone cement filling volume reached 30% of the volume of a vertebral body, the level of stiffness was restored to that of normal bone, and when higher bone cement exceeded 30% of the volume, the result was stiffness in excess of that of normal bone. When the bone cement volume was varied, local stress in the bony structures (cortical shell, trabecular bone and endplate) of each vertebra monotonically increased. Low-modulus bone cement has the effect of reducing strain in the augmented body, but only in cases of relatively high volumes of bone cement (>50%). Furthermore, varying the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies. Conclusion : The volume of cement was considered to be the most important determinant in endplate fracture. Changing the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies.

궤도 하부구조설계를 위한 간이 설계 모노그래프 개념 개발 (Development of A Simple Design Monograph for Track Sublayers)

  • 박미연;이진욱;이성혁;박재학;임유진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.428-435
    • /
    • 2011
  • In general, thickness of the sublayers under track is designed based on concept of vertical soil reaction value or vertical stiffness. However, this design method cannot take consideration into soil-track interaction under repetitive load, traffic condition and velocity of the train. Furthermore, the reinforced roadbed soils experience complex behavior that cannot be explained by conventional stress-strain relation expressed as soil reaction value k. The reinforced roadbed soils also can produce cumulative permanent deformation under repetitive load caused by train. Therefore new design method for the sublayers under track must be developed that can consider both elastic modulus and permanent deformation. In this study, a new design concept, a rule-of-thumb, is proposed as the form of design monograph that is developed using elastic multi-layer and finite element programs by analyzing stress and deformation in the sublayers with changing the thickness and elastic modulus of the sublayers and also using data obtained from repetitive triaxial test. This new design concept can be applied to design of the reinforced roadbed before developing full version of design methodology that can consider MGT, axial load and the material properties of the layers. The new design monograph allows the user to design the thickness of the reinforced roadbed based on permanent deformation, elastic modulus and MGT.

  • PDF