• Title/Summary/Keyword: Stiffness Improvement

Search Result 422, Processing Time 0.024 seconds

Effect of Composite Sandwich Endplates on the Improvement of Cold Start Characteristics for PEMFC (복합재료 샌드위치 엔드플레이트의 연료전지 냉시동성 향상에 미치는 효과)

  • Suh, Jung-Do;Ko, Jae-Jun;Ahn, Byung-Ki;Yu, Ha-Na;Lee, Dai-Gil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.859-867
    • /
    • 2011
  • The cold start problem is one of major obstacles to overcome for the commercialization of fuel cell vehicles. However, the cold start characteristics of fuel cell systems are very complicated since various phenomena, i.e. ice-blocking, electro-chemical reactions, heat transfer, and defrosting of BOP components, are involved in them. This paper presents a framework to approach the problem at a full stack scale using Axiomatic Design (AD). It was characterized in terms of Functional Requirements (FRs) and Design Parameters (DPs) while their relations were established in a design matrix. Considering the design matrix, the endplates should have low thermal conductivity and capacity without increase in weight or decrease in structural stiffness. Consequently, composite sandwich endplates were proposed and examined both through finite element analyses and experiments simulating cold start conditions. From the examinations, it was found that the composite sandwich endplates significantly contributed to improving the cold start characteristics of PEMFC.

Analysis of Weight Reduction Effect of Void Slab on Long and Short Term Deflections of Flat Plates (플랫 플레이트의 장단기 처짐에 대한 중공 슬래브의 자중저감 효과 분석)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.343-350
    • /
    • 2017
  • The RC flat plate system has benefits such as a short construction time, an improvement of workability and a floor height reduction. In the case of long span slab, cracking damages and large deflections tend to occur due to the low flexural stiffness of flat plates. Specially, over-loading by self-weight of slab during construction increases short and long-term deflections. These problems may be solved by the use of void slab that has benefits of the reduced self-weight. In this study, to analyze an effect of self-weight reduction of void slab on slab deflections, the parametric study is performed. Including variable conditions such as a concrete strength, a slab construction cycle, the number of shored floors, a compressive reinforcement ratio and a tensile reinforcement ratio, slab construction loads and deflections are calculated by considering the construction stages, concrete cracking, and long-term effects. The short-term deflections during construction and the long-term deflections after construction of both of normal and void slabs are compared and the effects of void slab on the reduction of slab deflections are analyzed.

Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes

  • Al-Osta, Mohammed A.;Baig, Mirza G.;Al-Malack, Muhammad H.;Al-Amoudi, Omar S. Baghabra
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.123-143
    • /
    • 2016
  • Use of heavy fuel fly ash (HFFA) (diesel and cracked fuel) for power generation in Saudi Arabia has generated and accumulated large quantities of HFFA as a byproduct. In this research, HFFA is studied with the emphasis on the utilization of this waste material in concrete blocks and asphalt concrete mixes. Two types of mixes, one with low and other with high cement content, were studied for concrete blocks. Different mixes having varying percentages of HFFA (0% to 25%), as cement/sand replacement or as an additive, were studied. The performance of concrete blocks is evaluated in terms of compressive strength, water absorption, durability and environmental concerns. The results showed that blocks cannot be cast if more than 15% HFFA is used; also there is a marginal reduction in the strength of all the mixes before and after being exposed to the sulfate solution for a period of ten months. HFFA is studied in asphalt concrete mixes in two ways, as an asphalt modifier (3&5%) and as a filler (50%) replacement, the results showed an improvement in stiffness and fatigue life of mixes. However, the stability and indirect tensile strength loss were found to be high as compared to the control mix due to moisture damage, indicating a need of using antistripping agents. On environmental concerns, it was found that most of the concerned elements are within acceptable limits also it is observed that lower concentration of barium is leached out with the higher HFFA concentrations, which indicates that HFFA may work as an adsorbent for this leaching element.

Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

  • Nguyen, Thuc Nhu;Yu, Yang;Li, Jianchun;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.541-553
    • /
    • 2019
  • Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation.

Internal singular configuration analysis and adaptive fuzzy logic control implementatioin for a planar parallel manipulator (평면형 병렬 매니퓰레이터의 내부 특이형상 해석 및 적응 퍼지논리제어 구현)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.81-90
    • /
    • 2000
  • Parallel manipulator is suitable for the high precise task because it than has higher stiffness, larger load capacity and more excellent precision, due to the closed-lop structure, than serial manipulator. But the controller design for parallel manipulator is difficult because the parallel manipulator has both the complexity of structure and the interference of actuators. The precision improvement of parallel manipulator using a classical linear control scheme is difficult because the parallel manipulator has the tough nonlinear characteristics. In this paper, firstly, the kinematic analysis of a parallel manipulator used at the experiments is performed so as to show the controllability. The analysis of internal singular configuration of the workspace is performed using the kinematic isotropic index so a sto show the limitation of control performance of a simple linear controller with fixed control gains. Secondly, a control scheme is designed by using an adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller is often used for the control of nonlinear system because it has both the inference ability and the learning ability. Lastly, the effeciency of designed control scheme is demonstrated by the real-time control experiments with IBM PC interface logic H/W and S/W of my won making. The experimental results was a success.

  • PDF

The Comparison Study on the Efficacy of Bucillamine Monotherapy and Bucillamine plus Methotrexate Combination Therapy in the Treatment of Rheumatoid Arthritis (류마티스 관절염 환자에서 Bucillamine 단독요법과 Bucillamine과 Methotrexate 병용요법의 치료효과에 대한 비교연구)

  • Lee, Young Ran;Suh, Okkyung;Jung, Sung Soo;Jun, Jae Bum;Yoo, Dae Hyun;Lee, Suk Hyang;Shin, Hyun Taek;Kim, Seong Yoon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • Rheumatoid arthritis (RA) is a common systemic inflammatory disease which DMARDS have been widely used as a treatment modality both as monotherapy and combination therapy Bucillamine, one of newer DMARDS, has recently proven its efficacy as monotherapy in the treatment of RA. The objective of this study was to compare the efficacy and the safety of bucillamine monotherapy and bucillamine plus methotrexate combination therapy in the treatment of rheumatoid arthritis. Forty-nine mild RA patients were enrolled in this prospective, open-trial and were assigned to receive bucillamine 200 mg/day (n=18) or bucillamine 200 mg/day and methotrexate 7.5-15 mg/week (n=31) orally for 16 weeks. Concomitant use of NSAID and prednisolone <5 mg/day or equivalent dose of steroid were allowed. Both monotherapy group and combination therapy group have shown significant improvement in disease activities (Ritchie index, painful joints, swollen joints, morning stiffness, grip strength, ESR, RF, CRP, patient's self assessment of pain, physician's global assessment of disease activity) from the baseline. However, there was no statistically significant difference between two groups. The adverse effects were more frequently shown in combination therapy group than monotherapy group. In conclusion, in patients with mild RA monotherapy has shown to be equally efficacious as combination therapy with less side effects.

  • PDF

An Experimental of RC Beams Strengthened with Pultruded Glass Fiber and Steel strip (통기성 유리섬유-강판 인발성형 스트립으로 보강된 RC보의 실험적 거동분석)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Recently, FRB is being used more as reinforcement of RC beam thanks to its material advantages in construction industry. The external attachment reinforcement of FRP is a construction method with advantages such as high strength, stiffness, excellent durability and construction practicability, despite of its weight. However, the reinforcement has a disadvantage to cause damage on permanent structure as its structure is water-tight by low water permeability reinforcement, preventing water from draining outside. The study attempted flexural failure test for GP of which material properties are equally same as the existing FRP and that with permeability, shows good binding with the concrete structure, durable performance and durability, comparably analyzing the improvement of durability and ductility according to changes of fiber contents of composite strip.

Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method (Part 1:Analytical Study) (TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 1:해석적 연구))

  • Jung, Myung-Cheol;Song, Jeong-Weon;Song, Jin-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2018
  • In this study, a cyclic loading test was carried out for a reinforced concrete frame installed a TS(tension-spring) damper for the purpose of verifying the seismic strengthening effect of the TS seismic reinforcing method. The test specimens are four specimens of non - reinforced frame and three reinforced frame specimens. Experimental parameters are Shape of damper and construction method of damper. As a result, the construction method of inserting type inside window was twice as much in terms of strength and stiffness, and the method of externally attached type showed a performance improvement of about 2 times in terms of energy dissipation. From these results, it can be confirmed that the TS seismic reinforcing method is a superior method for field application and seismic strengthening.

Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar (계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Choe, Su-Yong;Seo, Chang-Min;Jang, Sun-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.

A Study on Structural Safety Evaluation of Improved PSC Beam Bridges Considering To-Box Reinforcement Effect (박스형 보강효과를 고려한 개선된 PSC Beam교의 구조 안전성 평가에 관한 연구)

  • Han, Sung Ho;Shin, Jae Chul;Bang, Myung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.197-211
    • /
    • 2007
  • The deteriorated PSC Beam bridge is necessary improved reinforcement method. In the study, it is proposed the box reinforcing method which could make the stiffness of the PSC Beam bridges increase more stably through the secondary composition effect of open type PSC Beam bridge's girder which is converted into the consolidation box type and the half panel is formed between the lower flange of the PSC Beam about the deteriorated PSC Beam bridge suffering the capacity decline. In case the proposed reinforcement method combine with the existed external prestressed method, the close analysis depending on the time is conducted by the construction stage because of searching the effect of reinforcement quantitatively. The reinforcement method of the box type which is proposed an efficiency improvement in objective in application case, by a reinforcement method after proposing the whole and bend sectional reinforcement method, against a each reinforcement method evaluated the upward camber which it follows in secondary composite effect and a member stress characteristics. Also, the structural safety of PSC Beam bridge is evaluated quantitatively by examining of rating factor through load carrying capacity evaluation.