• 제목/요약/키워드: Stiffness Improvement

검색결과 422건 처리시간 0.028초

프로세스 대형 모터-발전기의 저어널 베어링 설계 개선 - Part I : 베어링 성능해석 (Journal Bearing Design Retrofit for Process Large Motor-Generator - Part I : Bearing Performance Analysis)

  • 이안성
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.197-202
    • /
    • 2012
  • In this study, with the purpose of fundamentally improving the unbalance response vibration of a large PRT motor-generator rotor by design, a performance improvement design analysis is carried-out by retrofitting tilting pad bearings, replacing the plain partial journal bearings that were originally applied for operation at a rated speed of 1,800 rpm. In this process, a goal of the design analysis is to obtain a design solution for maximizing the direct stiffness of the bearings while satisfying the key basic lubrication performance requirements such as the minimum lift-off speed and maximum oil-film temperature. The results show that with a careful design application of tilting pad journal bearings for operation at such a relatively low speed of 1,800 rpm, direct stiffness increment of the bearings by about two times can be effectively achieved. Prevention of pad unloading is also considered in the analysis. Moreover, the designs of elliptical and offset half journal bearings are also analyzed and reviewed.

하이드로포밍을 이용한 후륜 현가장치 설계 (The Design of Rear Suspension Using Hydroforming)

  • 오진호;최한호;이규민;박성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.205-208
    • /
    • 2008
  • Generally, there are several types in rear suspension. The rear suspension of subframe type consisting of side member and front/rear cross member is widely used in a medium car and full car. In the small car case, the beam of tubular type without independent suspension system is used to reduce manufacturing cost. The optimized rear suspension of subframe type using hydroforming method has been developed in this study. In designing suspension, the driving stability and durability performance should be considered as an important factor. The stability is related to dynamic frequency and durability is connected with stress analysis of structure. We focus on increasing the stiffness of suspension and decreasing the maximum stress relating to durability cycle life. For making use of the merits of hydroforming which is possible to make the bead, tube expansion, and feeding in desiring position, several optimization design techniques such as shape, size, and topology optimization are proposed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming. Through commercial software based on the finite element, the superiority of this design method is demonstrated.

  • PDF

탄성저항 운동프로그램이 재가관절염환자의 일상생활동작과 골밀도에 미치는 효과 (The Effect of the Elastic Band for Resistance Exercise Program on ADL and Bone Mineral Density in Arthritis Patients at Home)

  • 이상숙;손애리;천성수;이완희;김성렬
    • 근관절건강학회지
    • /
    • 제15권1호
    • /
    • pp.88-95
    • /
    • 2008
  • Purpose: This study was to evaluate and compare the effectiveness of the Resistance Exercise Program on pain, stiffness, ADL and bone mineral density in Arthritis Patients at home. Methods: Forty-two patients participated in this study and they were divided randomly into two groups (exercise and control group). Two subjects dropped during the study period. The exercise group had a structured training which was 50 minutes in duration, five times per week for a period of 16 weeks and the control group without any scheduled treatment. Data were gathered for 16 weeks (May 21, 2007- September 10, 2007) and were analyzed by using SPSS Win 12.0. Results: The pain, stiffness, ADL, balance and bone mineral density in the exercise group were improved significantly after the Resistance Exercise Program. However, a significant improvement on the above mentioned variables was not observed in the control group.

  • PDF

단위 구조 변경에 의한 알루미늄 압출재의 차음성능 개선 (Improvement Method of the Sound Insulation Performance of Aluminium Extruded Panels by the Unit Structure Modification)

  • 이현우;김석현;김정태;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.457-462
    • /
    • 2009
  • In a high speed train, aluminium extruded panel is widely used in floor, side wall and roof structures for high bending stiffness and weight reduction. However, with some inevitable reasons, aluminium extruded panel shows inferior sound insulation performance compared with the flat panel having same weight. Especially, occurrence of local resonance modes in the particular frequency band, is one of the main reason in the deterioration of the sound insulation performance. Local resonance modes are generated in the structure which consists of periodic unit structure, such as the aluminium extruded panel. The local resonance frequency is determined by the specification of the unit structure. In this study, we predict the local resonance frequency band on the aluminium extruded panel used for the high speed train, and investigate how the design modification in the unit structure influences the local resonance frequency band and panel bending stiffness. The purpose of the study is to provide the design information for the effective unit structure in order to improve the sound insulation performance of the aluminium extruded panel.

  • PDF

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.

쌍둥이 인접구조물의 진동 제어를 위한 비대칭 지진격리 연결 제어시스템의 매개변수연구 (Parametric Study of Asymmetric Base-Isolation Coupling Control System for Vibration Control of Adjacent Twin Buildings)

  • 김다위;박원석;옥승용
    • 한국안전학회지
    • /
    • 제37권3호
    • /
    • pp.45-51
    • /
    • 2022
  • This paper focuses on a recently proposed asymmetric base-isolation coupling control system (ABiCS) for the vibration control of adjacent twin buildings. The ABiCS consists of inter-story diagonal dampers, a connecting damper between the two buildings, and a seismic isolation device at the base floor of one building. To investigate the control characteristics of ABiCS, a parametric study was performed by numerically simulating the 20-story twin buildings. In the parametric study, the control capacities of the inter-story diagonal dampers, connecting damper, and seismic isolation device were considered as varying parameters. The parametric study results indicate that the connecting damper between the two buildings reduces the responses of both buildings only at optimal or near-optimal capacity. In addition, adjusting the stiffness of the base isolation is found to be the most effective method for improving seismic performance and achieving cost-effectiveness. Accordingly, we presented a scenario-based performance improvement approach in which reducing the stiffness of the base isolation device could be an effective technique to improve the seismic performance of both buildings. However, note that checking the maximum allowable displacement of the base isolation device is essential.

EICP 방법으로 처리된 사질토의 전단 강성도 및 강도 증가 분석 (Analysis of Improved Shear Stiffness and Strength for Sandy Soils Treated by EICP)

  • 송준영;하성준;장재원;윤태섭
    • 한국지반공학회논문집
    • /
    • 제36권1호
    • /
    • pp.17-28
    • /
    • 2020
  • 본 연구는 효소에 의한 요소 분해를 통해 생성되는 탄산칼슘 침전(EICP)을 지반 내에 유도했을 때의 지반개량 효과를 실내실험으로 분석하였다. 먼저, EICP 용액의 최적 혼합비를 결정하기 위하여 용액 주 재료인 요소, 염화칼슘, 우레아제 농도를 달리했을 때 생성된 탄산칼슘 양을 비교하였다. 다음으로, 산정된 최적 혼합비의 EICP 용액으로 처리된 사질토의 전단 강성도 및 강도를 전단파 속도 측정과 삼축압축시험을 통해 평가하였다. 전단파 속도 측정은 EICP 반응 시간 동안 수행되었으며, 이를 통해 탄산칼슘 침전에 따른 전단 강성도의 발달을 확인할 수 있었다. 삼축압축시험은 압밀배수조건에서 EICP 처리된 시료 그리고 처리되지 않은 시료에 대하여 수행되어, 최종적으로 마찰각 및 점착력을 비교하였다. 마지막으로 X-ray CT 및 SEM 촬영을 통하여 EICP 처리된 시료 내의 탄산칼슘을 시각적으로 조사하였다. 실험 결과, EICP 반응 시작 후 6시간이 지나면 처리된 시료의 전단 강성도는 처리되지 않은 시료에 비하여 19~31배 증가하였다. 또한 EICP 반응에 의해 생성되는 탄산칼슘의 양이 증가할수록 점착력은 증가하는 반면 마찰각은 감소하는 경향을 관찰하였다.

Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams

  • Fang, Zhuangcheng;Jiang, Haibo;Chen, Gongfa;Dong, Xiaotong;Shao, Tengfei
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.837-851
    • /
    • 2020
  • This study aims to examine the interface shear behavior between precast high-strength concrete slabs with pockets and steel beam to achieve accelerated bridge construction (ABC). Twenty-six push-out specimens, with different stud height, stud diameter, stud arrangement, deck thickness, the infilling concrete strength in shear pocket (different types of concrete), steel fiber volume of the infilling concrete in shear pocket concrete and casting method, were tested in this investigation. Based on the experimental results, this study suggests that the larger stud diameter and higher strength concrete promoted the shear capacity and stiffness but with the losing of ductility. The addition of steel fiber in pocket concrete would promote the ductility effectively, but without apparent improvement of bearing capacity or even declining the initial stiffness of specimens. It can also be confirmed that the precast steel-concrete composite structure can be adopted in practice engineering, with an acceptable ductility (6.74 mm) and minor decline of stiffness (4.93%) and shear capacity (0.98%). Due to the inapplicability of current design provision, a more accurate model was proposed, which can be used for predicting the interface shear capacity well for specimens with wide ranges of the stud diameters (from13 mm to 30 mm) and the concrete strength (from 26 MPa to 200 MPa).

SB latex 대체용 친환경 전분계 바이오바인더 및 합성바인더의 적용 기술 개발 (제1보) - 대체용 바인더의 Pre-coating 적용 - (Application Technology of Environmental-friendly Starch-based Biobinder and Synthesized Binder in order to Substitute SB Latex for Paper Coating (1) - Application of Substitute Binder for Pre-coating Layer -)

  • 이용규;김선구;원종명;김영훈
    • 펄프종이기술
    • /
    • 제47권5호
    • /
    • pp.134-140
    • /
    • 2015
  • This study was carried out to evaluate whether EVAc, acryl latex and biobinder could substitute the part of SB latex for pre-coating color formula or not. Different coating colors prepared through the substitution of 30% SB latex with EVAc, acryl latex, and biobinder were applied for pre-coating layer. 100% SB latex is used as a binder for top coating color. The optical properties, gloss, roughness, stiffness, dry- and wet-pick strength were measured. There were no significant differences in the brightness, whiteness, opacity, roughness, ink set-off and gloss of paper coated with 5 different coating colors. However the stiffness, dry- and wet-pick strength were somewhat lower than those of conventional coating color which 100% SB latex was used as a binder. Although the part of SB latex could be substituted with EVAc, acryl latex and biobinder without sacrificing the qualities of coated paper. Further researches on the improvement of stiffness, dry- and wet-pick strength, and the optimization of rheology of coating color in order to improve the qualities of coated paper are strongly recommended.

In vitro 환경에서 엘라스틴을 혼합한 콜라겐 진피 지지체의 내구성 (The Durability of Elastin-Incorporated Collagen Matrix for Dermal Substitute in Vitro Condition)

  • 유대현;홍종원;탁관철
    • Archives of Plastic Surgery
    • /
    • 제35권1호
    • /
    • pp.7-12
    • /
    • 2008
  • Purpose: Since the report of artificial dermis manufacturing method using collagen by Yannas in 1980, collagen has been effectively used as dermal substitute with its merits such as, lower antigeneicity, controllable biodegradation rate, and minimal inflammatory cytotoxic properties in the dermal tissue engineering field. However, weak mechanical durability was the main drawback of collagen dermal substitute. To improve its stability, mechanical or chemical cross-linking was used. Despite of such process, its clinical use was restricted due to weak durability. To improve the durability of collagen matrix, we designed elastin-incorporated collagen matrix and compared its durability with conventional collagen matrix. Methods: 15mm diameter with 4mm thick collagen dermal matrix was made according to Yannas protocol by mixing 0.5% bovine collagen and chondroitin-6-sulfate followed by degassing, freeze drying, dehydrodermal cross-linking and chemical cross-linking procedure. In elastin incorporated collagen matrix, same procedure was performed by mixing elastin to previous collagen matrix in 4:1 ratio(collagen 80% elastin 20%). In comparison of the two dermal matrix in vitro tests, matrix contracture rate, strain, tensile strength, was measured and stiffness was calculated from comparative analysis. Results: In terms of matrix contracture, the elastin-incorperated added collagen dermis matrix showed 1.2 times more contraction compared to conventional collagen matrix. However, tensile strength showed 1.6 times and stiffness showed 1.6 times increase in elastin-incorporated matrix. Conclusion: Elastin incorperated collagen matrix manufactured by our team showed increased durability due to improvement in tensile strength and stiffness compared to previous collagen matrix($Integra^{(R)}$).