• Title/Summary/Keyword: Stiffened plate

Search Result 266, Processing Time 0.024 seconds

A Study on the Stiffened Rectangular Plate under High Velocity Impact (고속발사 충격을 받는 보강사각판의 연구)

  • Woo, Dae-Hyun;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.350-357
    • /
    • 2012
  • The velocity response of stiffened rectangular plate under high velocity impact was studied. Numerical simulation was conducted on the stiffened plate with four stiffeners under various impact positions. Considered stiffener types were rib, I, hat and T stiffener. For the center impact position of I stiffened plate, the simulated residual velocity was 365.6 m/s with the initial projectile velocity 500 m/s. The reinforcing characteristic of I stiffened plate was excellent among four stiffeners.

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.226-229
    • /
    • 2006
  • The safety of on-going ships is one of important concerns in the view of environment and human life. The ship in bad condition is likely to be subjected to accidental loads such as collision. Once she has one or several minor collision damages in the form of circle or ellipse, her ultimate strength under compression or tension load will be reduced. Here, it is important to evaluate the reduction ratio of ultimate strength due to the damage from safety point of view. The problem of strength reduction of a plate with cutout such as opening hole has been treated by many researchers. As a result, a closed-form formula on the reduction of ultimate strength of a plate considering the effect of several forms of cutout was suggested. However, the structure of ships is composed of a plate and a stiffener so-called a stiffened plate, and it is likely to be damaged at a plate and stiffeners together in collision. This paper is to investigate the effect of minor collision damage on ultimate strength of a stiffened plate by using numerical analysis. For this study, the shape of minor collision damage of a stiffened plate was made by using contact algorithm. The deformed shape was used as an initial shape for ultimate stress analysis. Then, a series of nonlinear FE analysis was conducted to investigate the reduction effects of ultimate strength of the stiffened plate. The boundary condition was applied as simply supported at all boundaries, and the tripping of stiffener among failure mode under compression loading was neglected. These results were settled in the form of reduction ratio between ultimate of original intact stiffened plate and that of damaged stiffened plate.

  • PDF

Study on the Optimum Modification and Modal Analysis of Stiffened Plate of Ship Hull Structure (신체의 Stiffened Plate 구조물의 모우드해석과 최적변경법에 관한 연구)

  • 박성현;박석주;고재용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.10b
    • /
    • pp.51-58
    • /
    • 2000
  • The purpose of this study is the optimum modification of dynamic characteristics of stiffened plate structure. In the method of the optimization ,finite element method (FEM), sensitivity analysis and optimum structural modification method are used. To begin with, using FEM, the dynamic characteristics of stiffened plate structure is analyzed. Next, rate of change of dynamic characteristic by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of plate and cross section moment become a design variable. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure.

  • PDF

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.

Comparative Study of Metallic and Non-metallic Stiffened Plates in Marine Structures

  • Jeong, Han-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2010
  • In this paper, a comparative study of metallic and non-metallic stiffened plates under a lateral pressure load is performed using conventional statistically determinate and SQP(Sequential Quadratic Programming) optimisation approaches. Initially, a metallic flat-bar stiffened plate is exemplified from the superstructure of a marine vessel and, subsequently, its structural topology is varied as hat-section stiffened FRP(Fibre Reinforced Plastics) single skin plates and monocoque FRP sandwich plates having a PVC foam core. These proposed structural alternatives are analysed using elastic closed-form solutions and SQP optimisation method under stress and deflection limits obtained from practice to calculate and optimise geometry dimensions and weights. Results obtained from the comparative study provide useful information for marine designers especially at the preliminary design stage where various building materials and structural configurations are dealt with.

Analysis of Correction of Welding Deformation of Stiffened Plate by Heating Using Equivalent Loading Method based on Inherent Strain (고유변형도 기반 등가하중법에 의한 보강판의 가열 교정 해석)

  • 송하철;류현수;장창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of the present paper is to develop an analysis method for the correction of welding deformation of stiffened plate by line heating. In this paper, the equivalent loading method, based on the inherent strain theory, was used to analyze the heat-straightening of a stiffened plate. Equivalent loads were obtained by integrating the inherent strains which were determined from the highest temperature and the degree of restraint. Finally, the obtained equivalent loads were imposed, as applied loads, on the elastic analysis for the prediction of correction of welding deformation in stiffened plate. The proposed method is expected as a basic study in heat-straightening analysis of welding deformation in large scale block.

The Local Behavior Characteristics of a Plate Stiffened with Closed Ribs (폐단면 리브 보강판의 국부 거동 특성)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.277-288
    • /
    • 2014
  • In this study, the local displacement and moment characteristics of a plate stiffened with closed ribs are analyzed according to the dimensions of stiffened plates. The analyzed results of various stiffened plates under square distributed load show that the effect of the loading panel width to the local behavior is dominant but that of the next panel width is very small. And the local behavior of reference stiffened plates can be expressed by the angle between the plate and the rib, and that of other stiffened plates can be obtained by multiplying ratio functions of the loading panel width, plate thickness, rib thickness, rib height and next panel width and they give good results. Applying ratio functions to other loading sizes shows that the applicability of ratio functions except for the loading panel width is proved and the modified ratio functions of the loading panel width improve error ratios. Therefore, the local displacement and moments of a plate stiffened with closed ribs can easily achieve proper results regardless of the dimensions using ratio functions proposed in this study.

Natural Vibrations of Rectangular Stiffened Plates with Inner Cutouts (유공 직사각형 보강판의 진동해석)

  • K.C.,Kim;S.Y.,Han;J.H.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.35-42
    • /
    • 1987
  • For the analysis of natural vibrations of a rectangular stiffened plate with inner cutouts, an application of the Rayleigh-Ritz method is investigated. In construction of the trial function for the Rayleigh quotient, only the outer boundary conditions are satisfied with combination of Euler beam functions. As to the modeling of stiffened plates for the energy calculations, a lumping stiffener-effects method and the orthotropic plate analogy are considered for the purpose of comparison. Some numerical results obtained by the Rayleigh-Ritz method are compared with results by experiments and the finite element method. The following are major conclusions; (1) With the lumping stiffener-effects modeling the Rayleigh-Ritz method gives good results of both natural frequencies and mode shapes. The orthotropic plate analogy in cases of regularly stiffened plates is of restrictive use i.e. acceptable for a small cutout. (2) The natural frequency of a stiffened plate with inner cutouts between stiffeners is higher than that of without cutouts and increase as the hole area ratio increases as long as there are no discontinuous stiffeners due to the cutout.

  • PDF

Stability Analysis of Stiffened Plates on Elastic Foundations (탄성지반으로 지지된 보강판의 안정해석)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Oh, Soog-Kyoung;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.947-955
    • /
    • 2003
  • This research analyzes the dynamic stability of stiffened plates on elastic foundations using the finite element method. For analyzing the stiffened plates, both the Mindlin plate theory and Timoshenko beam-column theory were applied. In application of the finite element method, 8-nodes serendipity element system and 3-nodes finite element system were used for plate and beam elements, respectively Elastic foundations were modeled as the Pasternak foundations in which the continuity effect of foundation is considered. In order to verify the theory of this study, solutions obtained by this analysis were compared with the classical solutions in open literature and experimental solutions. The dynamic stability legions of stiffened plates on Pasternak foundations were determined according to changes of in-plane stresses, foundation parameters and dimensions of stiffener.

Dynamic Response Analysis of Stiffened Plates Subjected Plates Subjected to Moving Loads (이동하중을 받는 보강판의 동응답해석)

  • 정정훈;정태영
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • The dynamic response of stiffened rectangular plate subjected to a concentrated force or mass moving at constant speed is analyzed by using finite- element method. Stiffened plates are modelled as an assembly of isotropic thin plate elements and equivalent Euler beam ones, in which the beam elements represent the stiffener effects concentrated at the attached lines of stiffeners to the plates. The Newmark's time integration method is used to obtain the dynamic response of stiffened plates. Numerical examples are given to verify the validity of the presented method and also to investigate the effects of speed and moving mass on the dynamic characteristics of stiffened plates.

  • PDF