• Title/Summary/Keyword: Stieltjes transform

Search Result 24, Processing Time 0.017 seconds

THE INVERSION FORMULA OF THE STIELTJES TRANSFORM OF SPECTRAL DISTRIBUTION

  • Choi, Sang-Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.519-524
    • /
    • 2009
  • In multivariate analysis, the inversion formula of the Stieltjes transform is used to find the density of a spectral distribution of random matrices of sample covariance type. Let $B_{n}\;=\;\frac{1}{n}Y_{m}^{T}T_{m}Y_{m}$ where $Ym\;=\;[Y_{ij}]_{m{\times}n}$ is with independent, identically distributed entries and $T_m$ is an $m{\times}m$ symmetric nonnegative definite random matrix independent of the $Y_{ij}{^{\prime}}s$. In the present paper, using the inversion formula of the Stieltjes transform, we will find the density function of the limiting distribution of $B_n$ away from zero.

  • PDF

THE CONTINUOUS DENSITY FUNCTION OF THE LIMITING SPECTRAL DISTRIBUTION

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.515-521
    • /
    • 2010
  • In multivariate analysis, the inversion formula of the Stieltjes transform is used to find the density of a spectral distribution of random matrices of sample covariance type. Let $B_n\;=\;\frac{1}{N}Y_nY_n^TT_n$ where $Y_n\;=\;[Y_{ij}]_{n\;{\times}\;N}$ is with independent, identically distributed entries and $T_n$ is an $n\;{\times}\;n$ symmetric non-negative definite random matrix independent of the $Y_{ij}$'s. In the present paper, using the inversion formula of the Stieltjes transform, we will find that the limiting distribution of $B_n$ has a continuous density function away from zero.

WAITING TIME DISTRIBUTION IN THE M/M/M RETRIAL QUEUE

  • Kim, Jeongsim;Kim, Jerim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1659-1671
    • /
    • 2013
  • In this paper, we are concerned with the analysis of the waiting time distribution in the M/M/m retrial queue. We give expressions for the Laplace-Stieltjes transform (LST) of the waiting time distribution and then provide a numerical algorithm for calculating the LST of the waiting time distribution. Numerical inversion of the LSTs is used to calculate the waiting time distribution. Numerical results are presented to illustrate our results.

THE LIMITING SPECTRAL DISTRIBUTION FUNCTION OF LARGE DIMENSIONAL RANDOM MATERICES OF SAMPLE COVARIANCE TYPE

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.465-474
    • /
    • 1998
  • Results on the analytic behavior to the limiting spectral distribution of matrices of sample convariance type. studied in Marcenko and Pastur [2] are derived. using the Stieltjes transform it is shown that the limiting distrbution has a continuous derivative away from zero the derivative being analytic whenever it is positive and the behavior of it resembles the behavior of a square root function near the boundary of its support.

ANALYSIS OF THE BEHAVIOR OF LIMITING SPECTRAL DENSITY FUNCTION OF LARGE DIMENSIONAL RANDOM MATRICES

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.483-488
    • /
    • 2004
  • Results on the analytic behavior of the limiting spectral distribution of large dimensional random matrices, studied in Marcenko and Pastur [2], are derived. Using the Stieltjes transform, it is shown that the limiting distribution has a continuous derivative away from zero, the derivative being analytic whenever it is positive [3]. In the present paper, it is derived that the behavior of it resembles the behavior of a square root function near the boundary of its support.

A Model for a Continuous State System with (s,S) Repair Policy

  • Park, Won-J.;Kim, Eui-Yong;Kim, Hong-Gie
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.111-122
    • /
    • 1996
  • A model for a system whose state changes continuously with time is introduced. It is assumed that the system is modeled by a Brownian motion with negative drift and an absorbing barrier at the origin. A repairman arrives according to a Poisson process and repairs the system according to an (s,S) policy, i.e., he increases the state of the system up to S if and only if the state is below s. A partial differential equation is derived for the distribution function of X(t), the state of the system at time t, and the Laplace-Stieltjes transform of the distribution function is obtained by solving the partial differential equation. For the stationary case the explicit expression is deduced for the distribution function of the stationary state of the system.

  • PDF

Fredholm Type Integral Equations and Certain Polynomials

  • Chaurasia, V.B.L.;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.471-480
    • /
    • 2005
  • This paper deals with some useful methods of solving the one-dimensional integral equation of Fredholm type. Application of the reduction techniques with a view to inverting a class of integral equation with Lauricella function in the kernel, Riemann-Liouville fractional integral operators as well as Weyl operators have been made to reduce to this class to generalized Stieltjes transform and inversion of which yields solution of the integral equation. Use of Mellin transform technique has also been made to solve the Fredholm integral equation pertaining to certain polynomials and H-functions.

  • PDF

LOSS PROBABILITY IN THE PH/M/1/K QUEUE

  • Kim, Jeong-Sim
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.529-534
    • /
    • 2007
  • We obtain an explicit expression of the loss probability for the PR/M/1/K queue when the offered load is strictly less than one.

M/G/1 Queueing System wish Vacation and Limited-1 Service Policy

  • Lee, B-L.;W. Ryu;Kim, D-U.;Park, B.U.;J-W. Chung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.661-666
    • /
    • 2001
  • In this paper we consider an M/G/1 queue where the server of the system has a vacation time and the service policy is limited-1. In this system, upon termination of a vacation the server returns to the queue and serves at most one message in the queue before taking another vacation. We consider two models. In the first, if the sever finds the queue empty at the end of a cacation, then the sever immediately takes another vacation. In the second model, if no message have arrived during a vacation, the sever waits for the first arrival to serve. The analysis of this system is particularly useful for a priority class polling system. We derive Laplace-Stieltjes transforms of the waiting time for both models, and compare their mean waiting times.

  • PDF