• Title/Summary/Keyword: Stick-Slip phenomena

Search Result 32, Processing Time 0.025 seconds

A Dry Friction Model to Realize Stick for Simulation of the System with Friction and Accuracy Verification of the Friction Model (마찰력이 작용하는 동적 시스템의 점착 구현을 위한 마찰모델 제안 및 정확성 검증)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.748-755
    • /
    • 2012
  • Friction causes self-excited vibration, stick-slip vibration and any other friction-induced phenomena. That kinds of vibrations cause chatter and squeal. In order to predict such vibrations accurately, employing an accurate friction model is very important because a dynamic behavior of a system with friction is dominantly governed by a friction model. A Coulomb friction model is the most widely known model. Coulomb friction model is useful model to obtain analytical solutions of the system with friction and the model gives relatively good simulation result. However, defining a friction force at a stick state in simulation is hard because of the characteristic itself and a Coulomb friction model is discontinuous function between a static and a dynamic friction coefficient. Therefore, applying the Coulomb friction model to a simulation is not appropriate. In order to resolve these problems, an approximated Coulomb friction model was developed using simple and continuous function. However, an approximated Coulomb friction model cannot realize stick. Therefore, an approximated Coulomb friction model cannot describe friction phenomena accurately. In order to analyze a friction phenomenon accurately, a friction model for a simulation was proposed in this paper. A proposed friction model realizes stick and gives reasonably good results compared to results obtained by the simulation employing an approximated Coulomb friction model. Accuracy of a proposed friction model was verified by comparing experimental results.

Friction Compensation For High Precision Control of Servo Systems Using Adaptive Neural Network

  • Chung, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.179-179
    • /
    • 2000
  • An adaptive neural network compensator for stick-slip friction phenomena in servo systems is proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensator plays a role of canceling the effect of nonlinear slipping friction force. This enables the mechatronic systems more precise control and realistic design in the digital computer. It was confirmed that the control accuracy is more improved near zero velocity and the points of changing the moving direction through numerical simulation

  • PDF

The Brake Performance of Sintered Friction Materials Developed for High Speed Trains (고속전철용 소결 복합재의 마찰 특성평가)

  • Chung, So-La;Hong, Ui-Seok;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.266-271
    • /
    • 2007
  • The brake performance of sintered friction materials for the high speed train was studied. In this study, newly developed sintered materials based on copper were compared with the commercial products for high speed trains. They were tested on a 1/5 scale dynamometer using low carbon steel disks. Effectiveness, fade, and recovery tests were carried out to examine friction performance and the change of disk thickness variation (DTV) during brake applications and noise propensity were also evaluated. Results showed that the two sintered friction materials exhibit similar friction coefficients and braking performance, whereas the newly developed friction material was superior in terms of DTV generation and noise propensity to the commercial friction material. The improvement of the newly developed friction material was attributed to the high graphite content which reduced the stick-slip phenomena and prevented uneven disk wear by producing friction films on the counter disk.

The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure (속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구)

  • Joe, Yong-Goo;Shin, Ki-Hong;Lee, Jung-Yun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

Frictional Instabilities of Polymer Composite Containing Barite or Potassium Titanate for Brake Linings

  • Kim, Seong-Jin;Jang, Ho
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.60-65
    • /
    • 2003
  • Tribological properties of novolac resin composites containing particulate barite (BaSO$_4$) or potassium titanate (K$_2$Oㆍ6(TiO$_2$))whiskers (two typical space fillers for commercial automotive brake linings) were investigated. The emphasis of the current investigation was given to the effect of the two fillers on the propensity of the stick-slip phenomena and formation of stable rubbing surface. A block-on-disk type tribometer was used for friction assessment. Results showed that the BaSO$_4$-filled composite produced large friction force oscillations at slow sliding speeds and created severe damage on the gray iron counter surface. On the other hand, the composite with $K_2$Oㆍ6(TiO$_2$) whiskers formed a stable rubbing surface and showed smooth sliding behavior without large friction force fluctuation. The microscopic observation of the rubbing surface revealed that the $K_2$Oㆍ6(TiO$_2$)whiskers played a key role in the formation of stable rubbing surface and smooth sliding behavior by effectively reinforcing the resin.

Extracting Modal Parameters of a Layered Stone Pagoda Using TDD Technique (TDD 기법을 이용한 적층식 석탑의 동특성 추출)

  • Kim, Byeong Hwa;Moon, Dae Joong;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.103-108
    • /
    • 2015
  • This work introduces a modal testing and analysis results of the mock-up for a layered stone pagoda. The pagoda has been horizontally excited by an impact hammer. As to the measured acceleration time responses, the first five lower mode shapes and natural frequency are extracted by the TDD technique. It is observed that the time delay of a shear wave occurs through friction surfaces. Such phenomena cannot be described by using the traditional analytical models such as a continuum cantilever beam model or a discrete shear building model. However, the time delay typically affects only the phases of the pagoda system. The frequencies of the pagoda system are not affected by such time delay. It is found in the first time that the layered stone pagoda system has a set of closely placed modes in near of natural frequency. It is believed that such modes are due to the friction characteristics in friction surfaces. Based on the stick-slip friction model, it seems that the one of the closely placed mode can be a self-excited one.

The effects of damping on the limit cycle of a 2-dof friction induced self-oscillation system (마찰 기인 2 자유도계 시스템의 자려진동에 대한 댐핑의 영향)

  • 조용구;신기흥;오재웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.89-96
    • /
    • 2002
  • A two-degree of freedom model is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the disk of the brake, The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, not only the existence of the limit cycle but also the size of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency ((1)two masses with same natural frequencies, (2) with different natural frequencies), the propensity of limit cycle is discussed in detail. The results show an important fact that it may make the system worse when too much damping is present in the only one part of the masses.

  • PDF

The Effects of Damping on the Limit Cycle of a 2-dof Friction Induced Self-oscillation System (마찰 기인 2자유도계 시스템의 자려진동에 대한 댐핑의 영향)

  • 조용구;신기홍;이유엽;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.502-509
    • /
    • 2002
  • A two-degree of freedom model Is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the dusk of the brake. The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this Paper, not only titre existence of the limit cycle but also the sloe of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency[(1) Two masses with same natural frequencies, (2) with different natural frequencies] . the propensity of limit cycle Is discussed In detail. The results show an important fact that it may make the system worse when too much damping Is present in the only one part of the masses.

Effects of Steel Fiber, Zircon, and Cashew in the Brake Friction Materials on Creep Groan Phenomena (자동차 브레이크용 마찰재 내의 강철섬유, 지르콘, 캐슈가 크립 그론에 미치는 영향)

  • Jang, Ho;Lee, Kang-Sun;Lee, Eun-Ju;Jeong, Geun-Joong;Song, Hyun-Woo
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • Friction characteristics of a low-steel friction material were examined to investigate creep groan phenomena. The amount of three ingredients (steel fiber, $ZrSiO_4$, cashew) were changed to produce test specimens using a constrained mixture design. Tribological properties of the friction material specimens were obtained by using a 1/5 scale dynamometer. Results showed that the amount of three different ingredients strongly affected the level of friction coefficient and the difference between the static friction coefficient and the kinetic friction coefficient $({\Delta}{\mu}).\;ZrSiO_4$ and steel fiber tended to increase the average friction coefficient and aggravated the stick-slip phenomena suggesting high creep groan propensity. On the other hand, cashew tended to decrease average friction coefficient and ${\Delta}{\mu}$.

An Experimental Study of the Curve Squeal Noise (곡선부 스킬소음 발생 메커니즘의 실험적 연구)

  • Kim, Kwan-Ju;Park, Jin-Kyu;Kim, Beom-Soo;Kim, Jae-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.176-181
    • /
    • 2008
  • This paper presents results from experimental analysis of a friction-driven wheel responsible for generating wheel squeal noise. Squeal noise generating mechanism has been examined under the laboratory condition by the model rig on a small scale. Creep characteristics and squeal noise were observed by changing the possible variables, such as relative velocities and friction coefficients in time- and frequency-domain.