• Title/Summary/Keyword: Steroidogenesis

Search Result 111, Processing Time 0.032 seconds

Simazine-induced Alteration of the Expression Levels of Apoptosis- and Steroidogenesis-regulating Genes in Testicular Cells (Simazine이 정소세포에서 Apoptosis와 Steroidogenesis 조절 유전자들의 발현에 미치는 영향)

  • Park, Ho-Oak;Ko, Jeong-Jae;Bae, Jee-Hyeon
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • Simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) is a triazine herbicide that has been applied worldwide including Korea for agricultural purposes. Simazine is the second most commonly detected pesticide in surfaceand ground-water in the United States, Europe and Australia. It has been shown that simazine is a potent endocrine disruptor in wildlife and laboratory animals. Although many endocrine disruptors can induce apoptosis in various types of cells, the effects of simazine on apoptosis and on the expression of Bcl-2 family genes are not known. Also it is unknown the effect of simazine on the expression of steroidogenesis-regulating genes in testicular cells. In this study, we investigated the effect of simazine on the expression levels of apoptosis- and steroidogenesis-regulating genes in testicular cells. We found that a low concentration of simazine can alter the mRNA expression levels of steroidogenesis-related genes and Bcl-2 family genes in mouse Sertoli cells and rat Leydig cells. Thus, our results suggest that simazine can disturb normal testicular development and reproductive function by altering the expression of genes that are critical for the regulation of apoptosis and steroidogenesis.

Drp1 Expression and Phosphorylation in Steroidogenic Corpus Luteum during the Estrous Cycle in Rat Ovaries

  • Park, Ji-Eun;Lee, Seung Gee;Yoo, Young Hyun;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.26 no.2
    • /
    • pp.71-77
    • /
    • 2022
  • In response to luteinizing hormone (LH), a higher concentration of progesterone (P4) is produced in luteal cells of corpus luteum (CL). Mitochondria are an essential cellular organelle in steroidogenesis. The specific engagement of the concept regarding mitochondrial shaping with early stages of steroidogenesis was suggested in reproductive endocrine cells. Although the specific involvement of GTPase dynamin-related protein 1 (Drp1) with steroidogenesis has been demonstrated in luteal cells of bovine CL in vitro, its actual relationship with ovarian steroidogenesis during the estrous cycle remains unknown. In this study, while Fis1 and Opa1 protein levels did not show significant changes during the estrous cycle, Drp1, Mfn1, and Mfn2 proteins exhibited relatively lower levels at proestrus than at estrus or diestrus. 3β-HSD showed higher levels at proestrus than at estrus or diestrus. In addition, Drp1 phosphorylation (s637) was higher in proestrus than in estrus or diestrus. Immune-positive cells for Drp1, pDrp1 (s637), and 3β-HSD were all localized in the cytoplasm of luteal cells in the CL. The immune-positive cells for 3β-HSD were more frequently seen in the CL at proestrus than at estrus or diestrus. Immunoreactivity for Drp1 in luteal cells at proestrus was weaker than that at estrus or diestrus. However, pDrp1 (s637) immune-positive cells were mostly detected in luteal cells at proestrus. These results imply that steroidogenesis (P4 production) in the CL is closely related to phosphorylation of Drp1 at serine 637. Taken together, this study presents evidence that Drp1 phosphorylation at serine 637 is an important step in steroidogenesis in the CL.

Bisphenol A Bis(2,3-dihydroxypropyl) ether (BADGE.2H2O) Induces Orphan Nuclear Receptor Nur77 Gene Expression and Increases Steroidogenesis in Mouse Testicular Leydig Cells

  • Ahn, Seung-Won;Nedumaran, Balachandar;Xie, Yuanbin;Kim, Don-Kyu;Kim, Yong Deuk;Choi, Hueng-Sik
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.74-80
    • /
    • 2008
  • Bisphenol A bis (2,3-dihydroxypropyl) ether ($BADGE.2H_2O$) is a component of commercial liquid epoxy resins commonly used in the food-packing industry and in dental sealants. There is evidence that it has significant estrogenic activity. Nur77 plays a crucial role in the regulation of certain genes involved in LH-mediated steroidogenesis in testicular Leydig cells. It was previously demonstrated that Bisphenol A (BPA) stimulates Nur77 gene induction and steroidogenesis. In this study, we investigated the effects of $BADGE.2H_2O$ on Nur77 gene expression and steroidogenesis. Northern blot analysis showed that it increased the expression of Nur77 mRNA and protein, and transient transfection assays demonstrated that it increased the promoter activity and transactivation of Nur77. It also increased the expression of certain steroidogenic genes, such as StAR and $3{\beta}$-HSD. Finally, over-expression of a dominant negative Nur77 cDNA via adenoviral infection reduced $BADGE.2H_2O$-mediated progesterone biosynthesis. These results indicate that $BADGE.2H_2O$ disrupts testicular steroidogenesis by increasing Nur77 gene expression.

The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

  • Kim, Mijie;Park, Yong Joo;Ahn, Huiyeon;Moon, Byeonghak;Chung, Kyu Hyuck;Oh, Seung Min
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.10.1-10.8
    • /
    • 2016
  • Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and $17{\beta}$-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases ($3{\beta}$-HSD2 and $17{\beta}$-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and $100{\mu}g/mL$) showed a significant decrease in $17{\beta}$-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and $17{\beta}$-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and $17{\beta}$-HSD1, and lead to a decrease in $17{\beta}$-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer.

Establishment of Purification and Incubation Conditions of Leydig Cells for Screen Endocrine Disruptors Altering Steroidogenesis (스테로이드 합성을 교란하는 내분비계장애물질 검색을 위한 라이디히 세포 분리 및 배양조건 확립)

  • Kang Il-Hyun;Kang Tae-Seok;Kang Ho-Il;Moon Hyun-Ju;Kim Tae-Sung;Ki Ho-Hyun;Ryu Hye-Won;Sin Jae-Ho;Dong Mi-Sook;Han Soon-Young;Kim Seung-Hee;Hong Jin-Hwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • Normally, environmental toxicants are classified as endocrine disruptors if they interfere with regulation of cellular function by endogeneous steroids through inhibition of receptor binding and/or transcriptional activation. So, many studies have been performed about agonist/antagonist of hormone receptor to study mechanisms of endocrine disruptors. If toxicants affect steroid biosynthesis and/or degradation and alter hormone homeostasis, these also are classified as endocrine disruptors. But there are not many studies of the mechanisms of endocrine disruptors on the basis of alteration of steroid biosynthesis and/or degradation. Isolation and culture of Leydig cells from testis is one of methods for the steroidogenesis screening assays to evaluate a substance for altering steroidogenesis. Leydig cells were harvested using the method described by Klinefelter with modifications. Leydig cells were purified by perfusion of testis and incubation ($34^{\circ}C$, 80cycles/minute, 20 minutes) with collagenase (0.25 mg/kg), centrifugal elutriation, percoll gradient centrifugation and BSA multidensity gradient centrifugation. To confirm if this method is one of appropriate tools to evaluate a substance for altering steroidogenesis, ketoconazole, positive control was administered to purified Leydig cells. Ketoconazole ($10^{-8}M$ and above) significantly reduced testosterone production in purified Leydig cells. From above results, we suggest that this method for steroidogenesis screening assay appears to be a appropriate tool to detect suspected compounds for altering steroidogenesis.

  • PDF

Characterization of a protein-based filtering cartridge for the removal of atrazine-induced effects on living cultured cells

  • Basini, Giuseppina;Grasselli, Francesca;Bussolati, Simona;Conti, Virna;Bianchi, Francesco;Grolli, Stefano;Bianchi, Federica;Ramoni, Roberto
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.121-125
    • /
    • 2019
  • Chronic exposure to atrazine (ATR) raises concerns about adverse effects on reproductive functions. We tested our previously validated filtering device, the OBP-based filter, onto a biological model constituted of cultured swine granulosa cells treated for 48 h with media conditioned with 0.1 or $10{\mu}M$ ATR evaluating cell viability and steroidogenesis. The tested atrazine concentrations did not change granulosa cell viability and no filtering effects was observed following treatments with media prepared with differently filtered water. As for steroidogenesis, treatment of water with OBP-based filter containing $10{\mu}M$ atrazine completely suppressed the stimulatory effect of $10{\mu}M$ atrazine on progesterone production as well as the inhibitory effect of $0.1{\mu}M$ ATR on estradiol-$17{\beta}$ production by granulosa cells. Our data demonstrate that the impairment of steroidogenesis induced by ATR is effectively removed after water filtration in the experimental device thus suggesting potential use in biotechnological applications on living cells and/or organisms.

Is Autophagy a Prerequisite for Steroidogenesis in Leydig Cells?

  • Ji-Eun Park;Yoon-Jae Kim;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 2023
  • We investigated the involvement of autophagy with steroidogenesis in testicular Leydig cells. Human chorionic gonadotropin (hCG)-stimulated T production in Leydig cells was not remarkably altered in the presence of an autophagy inhibitor 3-methyladenine (3-MA). Although pretreatment with 3-MA demonstrated a tendency to decrease hCG-induced T production, the differences were significant only at a higher time point of 24 h following hCG. Microtubule associated protein light chain 3 (LC3)-II was detectable in the control cells in all the experiments. The hCG-induced increase in steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleave (P450scc) protein levels were not significantly altered by 3-MA. Leydig cells isolated from immature rat testes 12 h following hCG treatment showed relatively increased levels of LC3-II protein compared to the control group. Furthermore, LC3-II levels shown in these cells reached almost the identical to those from normal adult testes. However, LC3-II protein levels were almost comparable or even slightly lower than the controls at 48 h following hCG. Expression of StAR and P450scc was upregulated at both 12 and 48 h after hCG. We also used MA-10 cells, the mouse Leydig cell line, in this experiment. When dibutyryl cyclic-AMP was treated with MA-10 cells, P4 levels were significantly increased in the cell culture medium. However, P4 levels tended to decrease in the presence of 3-MA, but the difference was not statistically significant. This was consistent with the results of the rat Leydig cell experiments. Together, we believe that although autophagy participates in steroidogenesis and enhances steroidogenic efficacy of Leydig cells, it may not be a decisive cellular process for steroidogenesis, specifically in the mature Leydig cells.

Effects of Tributyltin Chloride (TBTCI) on Reproductive Organs and Steroidogenic Enzymes

  • Ki, Ho-Youn;Lee, Su-Jung;Shin, Jae-Ho;Kang, Il-Hyun;Moon, Hyun-Ju;Kim, Tae-Sung;Hoon Bae;Dong, Mi-Sook;Yoon, Yong-Dal
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.67-67
    • /
    • 2003
  • Tributyltin chloride (TBTCI) is an organotin compounds that have been widely used as antifouling agents and bioaccumulated in the food chain. TBTCI has been known to induce imposex in female gastropods. There are several reports that TBTCI increased testosterone level and inhibited the conversion of testosterone to estradiol by the aromatase cytochrome P450 enzyme. In this studies, we investigated the effects of TBTCI on steroidogenesis in testes, We dosed to 4-week-old Spragus-Dawleys (SD) male rats with TSTCI (0, 1, 5, 10, and 20mg/kg/day) daily by gavage for 14 days. TBTCI significantly decreased the weights of seminal vesicle, prostate, cowper's gland and LABC at 10 and 20mg/kg/day but significantly Increased the weights of liver at 10 and 20mg/kg/day and adrenals at 20mg/kg/day. mRNA levels of steroidogenic acute regulatory (StAR) and P450 aromatase were decreased and mRNA levels of cytochrome P450 17$\alpha$-hydroxylase/$C_{17-20}$ lyase (P450c17) were increased by TBTCI. TBTCI significantly increased serum testosterone level in dose-dependent manner. From above results, we found that TBTCI altered mRNA levels of enzymes related steroidogenesis, weights of organs and serum testosterone levels. This suggests that change of hormone levels may be due to alteration of mRNA levels of steroidogenic enzyme in testes, but further studies are necessary to investigate hormone levels in testis organ in order to find a relation of enzyme related to steroidogenesis with hormone levels. This work was supported by the Korea FDA Grant KFDA-03131-EDS-010.

  • PDF

Effects of Azoles on the In vitro Follicular Steroidogenesis in Amphibians

  • Kim, An-Na;Ahn, Ryun-Seop;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.10 no.4
    • /
    • pp.203-209
    • /
    • 2006
  • Azoles are widely used antifungal agents, which inhibit the biosynthesis of fungal cell-membrane ergosterol. In this study, using an amphibian follicle culture system, the effects of azoles on follicular steroidogenesis in frogs were examined. Itraconazole (ICZ), clotrimazole (CTZ) and ketoconazole (KCZ) suppressed pregnenolone ($P_5$) production by the follicles ($ED_{50};\;0.04_{\mu}M,\;0.33_{\mu} M,\;and\;0.91_{\mu}M$, respectively) in response to frog pituitary homogenates (FPH). However, fluconazole (FCZ), miconazole (MCZ) and econazole (ECZ) were not effective in the suppression of $P_5$ production. Not all the azoles examined suppressed the conversion of exogenous $P_5$ to progesterone ($P_4$) (by $3{\beta}$- HSD) or $P_4$ to $17{\alpha}$-hydroxyprogesterone ($17{\alpha}$-OHP) (by $17{\alpha}$-hydroxylase), or androstenedione (AD) to testosterone (T) (by $17{\beta}$-HSD). In contrast, CTZ, MCZ and ECZ in medium partially suppressed the conversion of $17{\alpha}$-OHP to AD (by C17-20 lyase) ($ED_{50};\;0.25{\mu} M,\;4.5{\mu}M,\;and\;0.7{mu}M$, respectively) and CTZ, KCZ, ECZ and MCZ strongly suppressed the conversion of exogenous T to estradiol ($E_2$) (by aromatase) ($ED_{50};\;0.02{\mu}M,\;8{\mu}M,\;0.07{\mu}M,\;0.8{\mu}M$, respectively). These results demonstrated that some azole agents strongly suppress amphibian follicular steroidogenesis and particularly, P450scc and aromatase are more sensitive to azoles than other steroidogenic enzymes.

Effect of Leptin on the Steroidogenesis of Cultured Human Granulosa Cells (인간 난소의 과립 세포 배양 중 Leptin이 스테로이드 생성에 미치는 영향)

  • Kim, Sei-Kwang;Kim, Myong-Shin;Hwang, Kyung-Joo;Kwon, Hyuck-Chan;Cho, Dong-Jae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2000
  • Objective: To elucidate the location of leptin and receptors of ovary specimens obtained from patients undergoing hysterectomy by immunohistochemical staining and to determine the effect of leptin on the steroidogenesis of cultured granulosa cells. Method: In the culturing process of the granulosa cells, FSH (1 IU/ml)and leptin (50 ng/ml), IGF-I (50 ng/ml) was administered to each study group (Group I: FSH; Group II: FSH, leptin; Group III: FSH, IGF-I; Group IV: FSH, IGF-I, leptin), and the levels of estradiol, progesterone, androstenedione in the culture media was measured by radioimmunoassay. Statistical analysis was conducted by one-way ANOVA with Scheffe test. Results: The results showed that leptin and leptin receptors were both found to be strongly stained in granulosa and theca cells, and also in some interstitial cells. Leptin receptors were also observed in cultured granulosa cells. While there was no statistically significant difference in the androstnedione concentrations between the groups, estradiol concentrations was significantly decreased in Group IV ($2202.0{\pm}151.14$ pg/ml) compared to Group III ($2859.0{\pm}122.6$ pg/ml), and progesterone concentrations were also significantly decreased in Group II($4696.3{\pm}190.6$ ng/ml) and Group IV ($4517{\pm}206.78$ ng/ml) compared to Group III($5546.0{\pm}179.5$ ng/ml). Conclustion: The study result of this study suggest that leptin is directly involved in the regulation of ovarian functions, in particular steroidogenesis.

  • PDF