• 제목/요약/키워드: Stern skeg

검색결과 14건 처리시간 0.019초

Twin-skeg형 컨테이너선 주위의 격자계 생성과 유동 해석 (Grid Generation and flow Analysis around a Twin-skeg Container Ship)

  • 박일룡;김우전;반석호
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.15-22
    • /
    • 2004
  • Twin-skeg type stern shapes are recently adopted for very large commercial ships. However it is difficult to apply a CFD system to a hull form having twin-skeg, since grid topology around a twin-skeg type stern is more complicated than that of a conventional single-screw ship, or of an open-shaft type twin-screw ship with center-skeg. In the present study a surface mesh generator and a multi-block field grid generation program have been developed for twin-skeg type stern. Furthermore, multi-block flow solvers are utilized for potential and viscous flow analysis around a twin-skeg type stern The present computational system is applied to a 15,000TEU container ship with twin-skeg to prove the applicability. Wave profiles and wake distribution are calculated using the developed flow analysis tools and the results are compared with towing tank measurements.

선미 스케그 주위의 유동 분석에 의한 선미 형상 설계 (The Stern Hull Form Design using the Flow Analysis around Stern Skeg)

  • 박동우
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.361-369
    • /
    • 2008
  • The optimized distance between skegs and angle of the skeg for a standard twin-skeg type LNG carrier were presented using the CFD and model tests. The evaluation method of self-propulsion performance was derived based on the results of CFD and confirmed the validity through model tests. The analyses to assess self-propulsion performance using CFD were shown by flow line patterns on the skeg surface, nominal wake distribution in the propeller plane and the evaluation for flow balance around stern skegs. The optimized ship that was applied to the optimized two design parameters in stern skeg arrangement for target ship was derived in this work. Finally speed performance of mother ship which is existing ship and optimized ship were compared through CFD and model tests. And the usefulness about the evaluation method of self-propulsion performance was reconfirmed.

쌍축 LNG 운반선에 대한 선미관 유닛 적용 가능성 연구 (A Feasibility Study on the Application of Stern Tube Unit for the Twin Skeg LNG Carrier)

  • 신상훈;성영재;박정용;한범우
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.282-289
    • /
    • 2016
  • Traditional construction method of the stern tube is difficult to control the process and needs excessive working hours. Recently in order to resolve these issues, stern tube unit has been installed for some commercial vessels. The stern tube unit is a monolithic structure of bush and related components. The purpose of this study is to carry out a feasibility study for application of the stern tube unit for a 174K twin skeg LNG carrier. In this study, a 19,000 TEU container carrier installing the stern tube unit has been selected to compare with the deformations of stern for a 174K twin skeg LNG carrier.

Numerical Computation for the Comparison of Stern Flows around Various Twin Skegs

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Choi, Young-Bok;Park, No-Joon
    • Journal of Ship and Ocean Technology
    • /
    • 제10권2호
    • /
    • pp.1-10
    • /
    • 2006
  • Numerical analysis of viscous flow around twin-skeg hull forms was conducted according to the variations of distance between skegs and vertical skeg inclinations by using a hydrodynamic analysis system, WAVIS. Six twin-skeg hull forms were derived by combining three distances between skegs (16m, 20m, 24m) and four vertical skeg angles ($0^{\circ},\;10^{\circ},\;15^{\circ},\;20^{\circ}$). It is found that the better resistance performance can be obtained with larger vertical skeg angle and smaller skeg distance for the present test cases. It also can be seen that the same trend is true for the nominal wake distributions in the propeller plane. Those tendencies were confirmed by the experimental results of MOERI. It is shown that numerical analysis can be a useful and practical tool for the evaluation and improvement of hydrodynamic performances for the complex stern hull forms with twin skegs.

쌍축 컨테이너선의 선미선형 변화에 따른 유동 특성에 대한 수치해석 (Numerical Analysis of Flow Characteristics of a Twin-skeg Container Ship with Variation of Stern Hull Shape)

  • 김희택;반석호;김형태
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.551-563
    • /
    • 2007
  • Numerical analysis for flow characteristics of a twin skeg container ship was carried out according to skeg vertical angles($0^{\circ}$, $10^{\circ}$, $20^{\circ}$) and skeg distances(16m, 20m, 24m) by using a commercial CFD code, FLUENT. Computed: pressure distributions, wake distributions and resistance coefficients have been compared with experimental and WAVIS results carried out by MOERI. Flow characteristics from numerical analysis such as nominal wake fractions, wake distribution and directions of the transverse vectors give good agreement with WAVIS results, even though there are quantitative discrepancy comparing with experimental measurements at the propeller plane. It is found that the better resistance performance can be obtained with the increase of the skeg vertical angle and the decrease of the skeg distance, which are mainly caused by viscous pressure resistance due to the skeg form and pressure recovery around the skeg. In addition, a vertical angle of the skeg gives more effect to the resistance coefficient comparing with the skeg distance. On the basis of results of the present study, it shows that numerical analysis using the commercial code, FLUENT, is useful and efficient tool for the evaluation of the complex stern hull form with twin-skegs.

바지선 제원 및 선형계수에 따른 침로 안정성 연관연구 (Correlation Study on Course Keeping Stability of Barges according to Variations in Dimensions and Hull Coefficient)

  • 천장호;김문찬;전호환;도인록;구자균
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.27-32
    • /
    • 2011
  • Recently, a ship-shaped barge has been developed to improve the resistance performance, as well as course-keeping capability. However, the stern of the barge is still similar to a box shape, and the vortex generated at the side of the barge creates drag and yaw instability. In order to solve this problem, stern skegs are normally used. The present paper deals with the correlation between the size of the stern skegs and the barge dimensions and hull coefficient. A stern skeg was designed to prevent yaw instability and minimize any additional resistance. The resistance test and course keeping test were performed in the towing tank at Pusan National University. To determine the correlation parameters between the designed stern skeg size and barge dimensions, a parametric study was also performed. Based on the experimental data from five barges, the optimum skeg dimensions were successfully derived. It is expected that the validation of the present study will be carried out by further experiments and computational comparisons in the near future.

47,000톤급 중형 크루즈선의 추진방식에 따른 선미부 형상과 저항특성 비교 (Comparison of the Stern Forms and Resistance Characteristics for G/T 47,000 Class Mid-size Cruise Ships)

  • 김동준;박현수;현범수;김무롱;최경식
    • 한국해양공학회지
    • /
    • 제18권5호
    • /
    • pp.57-63
    • /
    • 2004
  • Various propulsion systems, applicable for a G/T 47,000 class mid-size cruise ship, are discussed and a comparative study on stern forms and hull resistance characteristics is carried out, in relation to these propulsion systems. Based on shipyard production logs on similar cruise ships, a reference hull form of a single shaft propulsion system with center-skeg, is generated. Then two new stern hull forms are derived by using a hull transform technique: consisting of one stern form using a twin-skeg system and the other using the Azipod system. Using a CFD-based commercial flaw analysis program, WAVIS (WAve and VIScous flaw analysis system for hull form development), various hydrodynamic characteristics, including wave profiles and ship hull resistance, are compared for three hull forms.

컨테이너 운반선의 조종성능에 미치는 선미 부가물과 선미형상의 효과에 관한 실험적 연구 (An Experimental Study on the Effects of Afterbody Appendages and Hull Form on the Manoeuvrability of a Container Carrier)

  • 이호영;염덕준
    • 대한조선학회논문집
    • /
    • 제35권3호
    • /
    • pp.38-45
    • /
    • 1998
  • 본 논문에서는 계열 모형시험을 통하여, 길이/폭 비가 작은 컨테이너선의 조종성능에 미치는 선미 부가물, 타 및 선미형상의 효과에 대해서 조사 연구되었다. 타, 선미부가물과 선미형상을 변화시키면서 각 경우에 대하여 타 단독시험과 PMM 시험이 수행되었다. 실험적으로 구한 유체력 미계수와 일본에서 개발된 MMG 수학모형을 사용하여 조종성능 해석을 수행하였다. 그 결과 선미형상의 변화와 선미벌브 밑부분에 부가물을 부착시키는 것이 불안정한 선박의 방향안정성을 향상시키는데 있어 가장 효과적이었다.

  • PDF

Experimental study on the effects of stern bulb arrangement on the slamming load

  • Park, Jongyeol;Choi, Ju Hyuck;Lee, Hyun-ho;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.518-530
    • /
    • 2020
  • The present study concerns the stern slamming load of container carriers, with stern bulb arrangement variation. First, a series of wedge drop tests were conducted using simple wedge models with fixed deadrise angles, and tests with the cross-section models of practical container carrier sterns were followed. The deadrise angle of the simple wedge ranged from 0° to 10°. The pressure measurement results of the simple wedge drop tests were distributed between empirical formula and analytic solution, so the experimental setup was validated. In the cases of practical hull cross-sections, the water entry of the bulb prior to that of the transom resulted in characteristic water film generation and delayed pressure peak appearance. The trapped air between the bulbs damped the pressure in the twin skeg hull case, reducing the pressure peak and causing the pressure oscillation during water entry.

선미 스케그 외판의 좌굴강도에 관한 연구 (A Study on the Buckling Strength of Stern Skeg Shell Plate)

  • 최경신;설상석;김진우;공석환;정원지
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.80-87
    • /
    • 2021
  • Most container ships are currently being constructed as Ultra-Large Container Ships. Hence, the equipment of the ships is also becoming relatively large. In particular, propellers, rudders, and rudder stocks are large in the stern structure, and in relation, efficient design of the hull structures to safely secure these parts is important. The bottom shell plate surface of a stern skeg is a perforated plate from which the rudder stock penetrates, so it is an important component for the stern structure. In this paper, to determine the critical buckling of the shell plate, an interaction curve equation for the two-axis compression of the shell plate was derived using the maximum value of the static structural stress multiplier in a load multiplier mode. This equation predicts the timing of the buckling occurrence. By analyzing this interaction curve equation, the buckling behavior of the plates subjected to a combination load was determined and the usefulness of applying it to ship building was investigated.