• 제목/요약/키워드: Stereotactic target

검색결과 145건 처리시간 0.021초

정위적 방사선 수술에서 물팬텀을 이용한 목표점 및 전달 선량확인 (Target Localization and Dose Delivery Verification used a Water Phantom in Stereotactic Radiosurgery)

  • 강영남;이동준;권수일;권양
    • 한국의학물리학회지:의학물리
    • /
    • 제7권2호
    • /
    • pp.19-28
    • /
    • 1996
  • 정위적 방사선수술 (Stereotactic radiosurgery) 은 병소(region)의 위치를 정확히 결정하고 치료에 요구되는 방사선량이 정확히 전달되는 것이 중요하다. 본 연구는 이를 실험적으로 확인할 목적으로 특별히 고안된 물팬텀 (water phantom)을 개발하여 Leksell 정위기구 (Leksell Stereotactic Frame; LSF)에 부착하여 방사선수술을 시행하였다. 방사선 수술에는 Leksell 감마나이프 (Gamma Knife Unit; GKU) 와 LSF를 사용하였으며 실험을 위해 개발된 팬텀은 1mm 두께 플라스틱의 직경 160mm의 구형으로 물을 채울수 있는 구조로 되어있다. 측정장치로서는 목표점 설정(target localization)을 위한 필름과 전달 선량(dose delivery) 측정을 위해 이온 전리함(ionchamber) 을 사용하였으며 이를 팬텀의 목표점에 각각 위치시킬 수 있도록 설계하였다. 본 연구에서 목표점 확인은 허용 오차범위인 $\pm$0.5 mm 이내에서의 값을 보였으며 선량전달값은 $\pm$3% 정도의 오차로 허용값내에 있음을 보여주었다. 본 연구에서 개발된 팬텀으로 측정된 값이 모두 허용 오차범위 내에 있음을 보여주었고 이로인해 GKU 및 LSF의 주기적 QA(Quality Assurance)에 계속적으로 사용할수 있게 되었다.

  • PDF

Stereotactic Multiplanar Reformatted Computed Tomography-Guided Catheter Placement and Thrombolysis of Spontaneous Intracerebral Hematomas

  • Hwang, Jae-Ha;Han, Jong-Woo;Park, Kyung-Bum;Lee, Chul-Hee;Park, In-Sung;Jung, Jin-Myung
    • Journal of Korean Neurosurgical Society
    • /
    • 제44권4호
    • /
    • pp.185-189
    • /
    • 2008
  • Objective : The authors present their experiences with stereotactic multiplanar reformatted (MPR) computed tomography (CT)-guided catheter placement for thrombolysis of spontaneous intracerebral hematoma (sICH) and their clinical results. Methods : In 23 patients with sICH, MPR CT-guided catheter placement was used to select the trajectory and target point of hematoma drainage. This group was comprised of 11 men and 12 women, and the mean age was 57.5 years (range, 31-79 years). The patients' initial Glasgow Coma Scale scores ranged from 7 to 15 with a median of 11. The volume of the hematoma ranged from 24 mL to 86 mL (mean 44.5 mL). A trajectory along the main axis of the hematoma was considered to be optimal for thrombolytic therapy. The trajectory was calculated from the point of entry through the target point of the hematoma using reformatted images. Results : The hematoma catheter was left in place for a median duration of 48.9 hours (range 34 to 62 hours). In an average of two days, the average residual hematoma volume was 6.2 mL (range 1.4 mL to 10.2 mL) and was reduced by an average of 84.7% (range 71.6% to 96.3%). The residual hematoma at postoperative seven days was less than 5 mL in all patients. There was no treatment-related death during hospitalization. Conclusion : The present study indicates that stereotactic MPR CT-guided catheter placement for thrombolysis is an accurate and safe procedure. We suggest that this procedure for stereotactic removal of sICH should be considered for the optimization of the trajectory selection in the future.

정위적 방사선 수술시 치료위치에서의 정위적 표적점 확인을 통한 자기공명영상 획득의 정확도 연구 (Verification of Stereotactic Target Point Achieved by Acquisition of MR Image in Actual Treatment Position of Radiosurgery)

  • 김상환;류지옥;김백규;김영호
    • 대한방사선치료학회지
    • /
    • 제11권1호
    • /
    • pp.43-48
    • /
    • 1999
  • Purpose : For practical application of the MR image for stereotactic radiosurgery, the target point achieved by acquisition of MR image in a relatively homogeneous phantom has to agree with the actual isocenter of irradiation in real radiosurgery and the amount of distortion of the MR image should be known. Materials and Methods : A dosimetric film with a random target point was inserted into a radish vertically and horizontally on axis Z and they were fixed with a headring. After image acquisition by stereotactic radiosurgery planning system, we achieved stereotactic coordinate of the target point and examined irradiation using the coordinate acquired as isocenter. After the irradiation, the film in the radish was developed and processed and the degree of coincidence between the target point marked on the film and the center of the radiation distribution. In order to measure the degree of distortion of the MR image in a different way, an acryl phantom was made and punctures were made at intervals of 1 cm and a drop of oil was dropped into it. Then, it was inserted into the radish vertically and horizontally on axis Z to acquire the MR image. Each coordinate was achieved and the estimation of distortion of MR image was made both in vertical and horizontal directions Results : The film from the radio was developed and for the one inserted vertically on axis Z, there was a good coincidence in the discrepancy between the target point marked on the film and the center of the radiation distribution. For the one inserted horizontally, the discrepancy between them was under 0.5 mm. As a result of estimating distortion of MR image using acryl, the discrepancy was under 0.45 mm in the case of the phantom inserted vertically on axis Z, and that of the one inserted horizontally was 1.4 mm. Conclusion : We were able to confirm good coincidence in homogeneous phantom in actual treatment position of radiosurgery using the MR image and the discrepancy measured in the analysis of distortion of the MR image did not exceed the permissible level. Therefore, it was evident the system of the hospital is suitable for radiosurgery using MR image.

  • PDF

Efficient approach for determining four-dimensional computed tomography-based internal target volume in stereotactic radiotherapy of lung cancer

  • Yeo, Seung-Gu;Kim, Eun Seog
    • Radiation Oncology Journal
    • /
    • 제31권4호
    • /
    • pp.247-251
    • /
    • 2013
  • Purpose: This study aimed to investigate efficient approaches for determining internal target volume (ITV) from four-dimensional computed tomography (4D CT) images used in stereotactic body radiotherapy (SBRT) for patients with early-stage non-small cell lung cancer (NSCLC). Materials and Methods: 4D CT images were analyzed for 15 patients who received SBRT for stage I NSCLC. Three different ITVs were determined as follows: combining clinical target volume (CTV) from all 10 respiratory phases ($ITV_{10Phases}$); combining CTV from four respiratory phases, including two extreme phases (0% and 50%) plus two intermediate phases (20% and 70%) ($ITV_{4Phases}$); and combining CTV from two extreme phases ($ITV_{2Phases}$). The matching index (MI) of $ITV_{4Phases}$ and $ITV_{2Phases}$ was defined as the ratio of $ITV_{4Phases}$ and $ITV_{2Phases}$, respectively, to the $ITV_{10Phases}$. The tumor motion index (TMI) was defined as the ratio of $ITV_{10Phases}$ to $CTV_{mean}$, which was the mean of 10 CTVs delineated on 10 respiratory phases. Results: The ITVs were significantly different in the order of $ITV_{10Phases}$, $ITV_{4Phases}$, and $ITV_{2Phases}$ (all p < 0.05). The MI of $ITV_{4Phases}$ was significantly higher than that of $ITV_{2Phases}$ (p < 0.001). The MI of $ITV_{4Phases}$ was inversely related to TMI (r = -0.569, p = 0.034). In a subgroup with low TMI (n = 7), $ITV_{4Phases}$ was not statistically different from $ITV_{10Phases}$ (p = 0.192) and its MI was significantly higher than that of $ITV_{2Phases}$ (p = 0.016). Conclusion: The $ITV_{4Phases}$ may be an efficient approach alternative to optimal $ITV_{10Phases}$ in SBRT for early-stage NSCLC with less tumor motion.

THREE-DIMENSIONAL VERIFICATION OF INTRACRANIAL TARGET POINT DEVIATION USING MRI-BASED POLYMER-GEL DOSIMETRY FOR CONVENTIONAL AND FRACTIONATED STEREOTACTIC RADIOSURGERY

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Journal of Radiation Protection and Research
    • /
    • 제36권3호
    • /
    • pp.107-118
    • /
    • 2011
  • Conventional (SRS) and fractionated (FSRS) stereotactic radiosurgery necessarily require stringent overall target point accuracy and precision. We determine three-dimensional intracranial target point deviations (TPDs) in a whole treatment procedure using magnetic resonance image (MRI)-based polymer-gel dosimetry, and suggest a technique for overall system tests. TPDs were measured using a custom-made head phantom and gel dosimetry. We calculated TPDs using a treatment planning system. Then, we compared TPDs using mid bi-plane and three-dimensional volume methods with spherical and elliptical targets to determine their inherent analysis errors; finally, we analyzed regional TPDs using the latter method. Average and maximum additive errors for ellipses were 0.62 and 0.69 mm, respectively. Total displacements were 0.92 ${\pm}$ 0.25 and 0.77 ${\pm}$ 0.15 mm for virtual SRS and FSRS, respectively. Average TPDtotal at peripheral regions was greater than that at central regions for both. Overall system accuracy was similar to that reported previously. Our technique could be used as an overall system accuracy test that considers the real radiation field shape.

양성자 화학적 이동영상기법(1H-CSI)을 이용한 정위적 뇌생검 (Proton Magnetic Resonance Chemical Shift Imaging(1H-CSI)-directed Stereotactic Brain Biopsy)

  • 장경술;손병철;김문찬;최병길;김의녕;김범수;최보영;백현만;홍용길;강준기
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권12호
    • /
    • pp.1606-1611
    • /
    • 2000
  • Objective : To obtain more reliable sample in stereotactic biopsy, authors adopted proton chemical shift imaging ($^1H$-CSI)-directed biopsy. Until now, proton single voxel spectroscopy($^1H$-SVS) technique has been reported as a technique using metabolic information in stereotactic biopsy. The authors performed $^1H$-CSI with a stereotactic headframe in place and evaluated the pathologic results obtained from local metabolic information through $^1H$-CSI. Methods : $^1H$ CSI-directed stereotactic biopsy was performed in four patients. $^1H$-CSI and conventional Gd-enhancement stereotactic MRI was done simultaneously after application of the stereotatic frame. After reconstruction of metabolic maps of NAA/Cr, Cho/Cr, and Lactate/Cr ratios, the focal areas of increased Cho/Cr ratios and decreased NAA/Cr ratios were selected for target sites in the MR images Results : There was no difficulty in performing $^1H$-CSI with the stereotactic headframe in place. In pathologic examinations, the samples taken in area of increased Cho/Cr ratios and decreased NAA/Cr ratios showed the features of increased cellularity, mitoses and cellular atypism, thus facilitated the diagnosis. The pathologic samples taken from the area of increased Lactate/Cr ratios showed prominent feature of necrosis. Conclusion : $^1H$-CSI was feasible with stereotactic head frame in place. The final pathologic results obtained in our samples were concordant with the local metabolic informations from $^1H$-CSI. Authors believe that $^1H$ CSI-directed stereotactic biopsy may provide us advantages in obtaining more reliable tissue specimen in stereotactic biopsy.

  • PDF

자기공명영상을 이용한 두개부내 표적의 3차원적 위치결정 (Determination of Stereotactic Target Position with MR Localizer)

  • 최태진;김옥배;주양구;서수지;손은익
    • 한국의학물리학회지:의학물리
    • /
    • 제7권2호
    • /
    • pp.67-77
    • /
    • 1996
  • 목적 : 전신자기공명영상장치의 두개부코일링에 삽입할 수 있는 뇌정위표적기를 제작하고, 횡단면, 시상면 및 관상면에서 표적의 입체적 위치를 결정하여 비교하였다. 방법 : 고강도 합성수지를 이용하여 1.5T 의 전신자기공명 영상장치에서 뇌정위시술용 두 개 부고정환에 부착하여 두개부내 표적위치를 결정할 수 있는 뇌정위표적기를 시험제작하였다. 본 연구에서 시험제작된 뇌정위표적기는 자기공명장치 Magnetom 1.5T(Siemens사, 독일)의 두부코일(외경이 260mm) 내에 설치할 수 있도록 하였으며, 횡단면이나 시상면 또는 관상면에서 표적의 위치를 3차원적으로 결정할 수 있게 하여 각 단면에서 결정된 가상표적의 위치를 비 교하였다. 결과 : 위치가 서로 다른 2개의 가상표적에 대한 모의실험 결과, 횡단면에서 x축의 최대오차는 -1.4mm, y축 -0.7mm, z축 1.lmm를 얻었으며, 시상면에서는 X축 1.3, Y축 1.0mm, Z축 1.lmm, 관상면에서는 X축 -1.4mm, Y축 1.1mm, Z축 -1.5mm로 나타나 횡단면, 시상면 및 관상면에서 구한 표적값이 실험오차범위에서 거의 일치하였다. 결론 : 고강도 합성수지를 이용하여 시험제작한 자기공명영상용 뇌정위표적기를 이용하여 두개부내 표적에 대한 모의실험결과 횡단면, 시상면 및 관상면에서 구해진 표적의 위치가 2mm의 오차범위내에서 실제값에 거의 일치함을 얻었다.

  • PDF

Quantitative Evaluation of Setup Error for Whole Body Stereotactic Radiosurgery by Image Registration Technique

  • Kim, Young-Seok;Yi, Byong-Yong;Kim, Jong-Hoon;Ahn, Seung-Do;Lee, Sang-wook;Im, Ki-Chun;Park, Eun-Kyung
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.103-105
    • /
    • 2002
  • Whole body stereotactic radiosurgery (WBSRS) technique is believed to be useful for the metastatic lesions as well as relatively small primary tumors in the trunk. Unlike stereotactic radiosurgery to intracranial lesion, inherent limitation on immobilization of whole body makes it difficult to achieve the reliable setup reproducibility. For this reason, it is essential to develop an objective and quantitative method of evaluating setup error for WBSRS. An evaluation technique using image registration has been developed for this purpose. Point pair image registrations with WBSRS frame coordinates were performed between two sets of CT images acquired before each treatment. Positional displacements could be determined by means of volumetric planning target volume (PTV) comparison between the reference and the registered image sets. Twenty eight sets of CT images from 19 WBSRS patients treated in Asan Medical Center have been analyzed by this method for determination of setup random error of each treatment. It is objective and clinically useful to analyze setup error quantitatively by image registration technique with WBSRS frame coordinates.

  • PDF

Study on The Development of A New Whole Body Fame

  • Chung, Jin-Bum;Suh, Tae-Suk;Chung, Won-Kyun;Choe, Bo-Young;Lee, Hyoung-Koo
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.136-137
    • /
    • 2002
  • We have been researching upgrade version of a stereotactic whole body frame, used for evaluating daily setup accuracy of the patient positioning during fractionated extra-cranial stereotactic radiotherapy. Currently, we are focusing on the development of a new stereotactic whole body frame, and then will handle organ movement produced by breathing at the next stage. MeV-Green is chosen for the best immobilizer possible and the epoxy board is for the frame with the dimension of 110 em in length, 50 cm in width in order to maximize transmission rate of the beam from lateral or posterior direction and to fit CT and PET scanners with an aperture of 55 cm at least. The key point of an upgraded stereotactic whole body frame will be set on the collision-free rotation of the gantry with the frame, and the development of the checking structure for the daily patient repositioning regarding internal target.

  • PDF