• Title/Summary/Keyword: Stereotactic target

Search Result 145, Processing Time 0.238 seconds

Treatment Results of CyberKnife Radiosurgery for Patients with Primary or Recurrent Non-Small Cell Lung Cancer (원발 혹은 재발성 비소세포 폐암 환자에서 사이버나이프률 이용한 체부 방사선 수술의 치료 결과)

  • Kim, Woo-Chul;Kim, Hun-Jung;Park, Jeong-Hoon;Huh, Hyun-Do;Choi, Sang-Huoun
    • Radiation Oncology Journal
    • /
    • v.29 no.1
    • /
    • pp.28-35
    • /
    • 2011
  • Purpose: Recently, the use of radiosurgery as a local therapy in patients with early stage non-small cell lung cancer has become favored over surgical resection. To evaluate the efficacy of radiosurgery, we analyzed the results of stereotactic body radiosurgery in patients with primary or recurrent non-small cell lung cancer. Materials and Methods: We reviewed medical records retrospectively of total 24 patients (28 lesions) with non-small cell lung cancer (NSCLC) who received stereotactic body radiosurgery (SBRT) at Inha University Hospital. Among the 24 patients, 19 had primary NSCLC and five exhibited recurrent disease, with three at previously treated areas. Four patients with primary NSCLC received SBRT after conventional radiation therapy as a boost treatment. The initial stages were IA in 7, IB in 3, IIA in 2, IIB in 2, IIIA in 3, IIIB in 1, and IV in 6. The T stages at SBRT were T1 lesion in 13, T2 lesion in 12, and T3 lesion in 3. 6MV X-ray treatment was used for SBRT, and the prescribed dose was 15~60 Gy (median: 50 Gy) for PTV1 in 3~5 fractions. Median follow up time was 469 days. Results: The median GTV was 22.9 mL (range, 0.7 to 108.7 mL) and median PTV1 was 65.4 mL (range, 5.3 to 184.8 mL). The response rate at 3 months was complete response (CR) in 14 lesions, partial response (PR) in 11 lesions, and stable disease (SD) in 3 lesions, whereas the response rate at the time of the last follow up was CR in 13 lesions, PR in 9 lesions, SD in 2 lesions, and progressive disease (PD) in 4 lesions. Of the 10 patients in stage 1, one patient died due to pneumonia, and local failure was identified in one patient. Of the 10 patients in stages III-IV, three patients died, local and loco-regional failure was identified in one patient, and regional failure in 2 patients. Total local control rate was 85.8% (4/28). Local recurrence was recorded in three out of the eight lesions that received below biologically equivalent dose 100 $Gy_{10}$. Among 20 lesions that received above 100 $Gy_{10}$, only one lesion failed locally. There was a higher recurrence rate in patients with centrally located tumors and T2 or above staged tumors. Conclusion: SBRT using a CyberKnife was proven to be an effective treatment modality for early stage patients with NSCLC based on high local control rate without severe complications. SBRT above total 100 $Gy_{10}$ for peripheral T1 stage patients with NSCLC is recommended.

Multiple Daily Fractionated RT for Malignant Glioma (악성 성상세포종과 다형성 교아종 치료에 있어서 다분할 방사선 치료와 단순분할 방사선치료에 대한 성적비교)

  • Yang Kang Mo;Chang Hye Sook;Ahn Seoung Do;Choi Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.151-158
    • /
    • 1994
  • Since Jan. 1992, authors have conducted a pilot study to treat malignant glioma with multiple daily fractionated(MDF) radiation therapy and this paper presents the outcome compared MDF to conventional factionated(CF) radiation therapy Between Sep. 1989 and Jan. 1993, forty three patients with high grade glioma of brain except brain stem glioma were treated: nineteen patients were treated with CF radiation therapy and 24 patients were treated with MDF radiation therapy. In CF radiation therapy, total dose was 6300cGy/35fx in 7 weeks, which 5040cGy was delivered to the initial target volume and 1260cGy to reduced target volume. And in MDF radiation therapy, total dose was 6400cGy/40fx in 4 weeks, which 3200cGy was delivered to the initial target volume as 160cGy 2 times daily 6hr apart. All patients had histologically confirmed anaplastic astrocytoma(AA) of glioblastoma multiforme (GBM) with stereotactic biopsy or craniotomy for subtotal or gross tumor resection. The range of follow-up was 7 months to 4 years with a median follow-up of 9 months. The Median survival from surgery was 9 months for all patients. The median survival was 9 months and 10 months for MDF group and CF group and 10 months and 9.5 months for glioblastoma multiforme and anaplastic astrocytoma, respectively. In 36 patients with follow-up CT scan or MRI scan, disease status was evaluated according to treatment groups, Four patients(GBM:3, AA:1) of 21 patients in MDF group, were alive with no evidence of disease, while none of patient was alive with no evidence of disease in CF group. The progression of disease had occurred in 20 patients, 11 patients and 9 patients in MDF group and CF group, respectively All of these patients showed in-field progression of disease, Four of 11 patients($27\%$) in MDF group showed the new leasion outside of the treatment field, while 5 of 9 patients($56\%$) in CF group. In our study the prognosis was not influenced by age, KPS, grade, extent of surgery and different fractional scheduled radiation therapy. Authors concluded that MDF regimen was well tolerated and shortened the treatment period from 7 weeks to 4 weeks without compromising results. We believe that further follow-up is needed to assess the role of MDF.

  • PDF

Development of New 4D Phantom Model in Respiratory Gated Volumetric Modulated Arc Therapy for Lung SBRT (폐암 SBRT에서 호흡동조 VMAT의 정확성 분석을 위한 새로운 4D 팬텀 모델 개발)

  • Yoon, KyoungJun;Kwak, JungWon;Cho, ByungChul;Song, SiYeol;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.100-109
    • /
    • 2014
  • In stereotactic body radiotherapy (SBRT), the accurate location of treatment sites should be guaranteed from the respiratory motions of patients. Lots of studies on this topic have been conducted. In this letter, a new verification method simulating the real respiratory motion of heterogenous treatment regions was proposed to investigate the accuracy of lung SBRT for Volumetric Modulated Arc Therapy. Based on the CT images of lung cancer patients, lung phantoms were fabricated to equip in $QUASAR^{TM}$ respiratory moving phantom using 3D printer. The phantom was bisected in order to measure 2D dose distributions by the insertion of EBT3 film. To ensure the dose calculation accuracy in heterogeneous condition, The homogeneous plastic phantom were also utilized. Two dose algorithms; Analytical Anisotropic Algorithm (AAA) and AcurosXB (AXB) were applied in plan dose calculation processes. In order to evaluate the accuracy of treatments under respiratory motion, we analyzed the gamma index between the plan dose and film dose measured under various moving conditions; static and moving target with or without gating. The CT number of GTV region was 78 HU for real patient and 92 HU for the homemade lung phantom. The gamma pass rates with 3%/3 mm criteria between the plan dose calculated by AAA algorithm and the film doses measured in heterogeneous lung phantom under gated and no gated beam delivery with respiratory motion were 88% and 78%. In static case, 95% of gamma pass rate was presented. In the all cases of homogeneous phantom, the gamma pass rates were more than 99%. Applied AcurosXB algorithm, for heterogeneous phantom, more than 98% and for homogeneous phantom, more than 99% of gamma pass rates were achieved. Since the respiratory amplitude was relatively small and the breath pattern had the longer exhale phase than inhale, the gamma pass rates in 3%/3 mm criteria didn't make any significant difference for various motion conditions. In this study, the new phantom model of 4D dose distribution verification using patient-specific lung phantoms moving in real breathing patterns was successfully implemented. It was also evaluated that the model provides the capability to verify dose distributions delivered in the more realistic condition and also the accuracy of dose calculation.

Comparison and Evaluation of radiotherapy plans by multi leaf collimator types of Linear accelerator (선형가속기의 다엽콜리메이터 형태에 따른 치료계획 비교 평가)

  • Lim, Ji Hye;Chang, Nam Joon;Seok, Jin Yong;Jung, Yun Ju;Won, Hui Su;Jung, Hae Youn;Choi, Byeong Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.129-138
    • /
    • 2018
  • Purpose : An aim of this study was to compare the effect of multi leaf collimator(MLC) types for high dimension radiotherapy in treatment sites used clinically. Material and Method : 70 patients with lung cancer, spine cancer, prostate cancer, whole pelvis, head and neck, breast cancer were included in this study. High definition(HD) MLC of TrueBeam STx (Varian Medical system, Palo Alto, CA) and millenium(M) MLC of VitalBeam (Varian Medical system, Palo Alto, CA) were used. Radiotherapy plans were performed for each patient under same treatment goals with Eclipse (Version 13.7, Varian Palo Alto USA, CA). To compare the indicators of the radiotherapy plans, planning target volume(PTV) coverage, conformity index(CI), homogeneity index(HI), and clinical indicators for each treatment sites in normal tissues were evaluated. To evaluate low dose distribution, $V_{30%}$ values were compared according to MLC types. Additionally, length and volume of targets for each treatment sites were investigated. Result : In stereotatictic body radiotherapy(SBRT) plan for lung, the average value of PTV coverage was reduced by 0.52 % with HD MLC. With SBRT plan using HD MLC for spine, the average value of PTV coverage decreased by 0.63 % and maximum dose decreased by 1.13 %. In the test of CI and HI, the values in SBRT plan with HD MLC for spine were 1.144, 1.079 and the values using M MLC were 1.160, 1.092 in SBRT plan for lung, The dose evaluation of critical organ was reduced by 1.48 % in the ipsilateral lung mean dose with HD MLC. In prostate cancer volumetric modulated arc therapy(VMAT) with HD MLC, the mean dose and the $V_{30}$ of bladder and the mean dose and the $V_{25}$ of rectum were reduced by 0.53 %, 1.42 %, 0.97 %, and 0.69 %, respectively (p<0.05). The average value of heart mean dose was reduced by 0.83 % in breast cancer VMAT with M MLC. Other assessment indices for treatment sites showed no significant difference between treatment plans with two types of MLC. Conclusion : Using HD MLC had a positive impact on the PTV coverage and normal tissue sparing in usually short or small targets such as lung and spine SBRT and prostate VMAT. But, there was no significant difference in targets with long and large such as lung, head and neck, and whole pelvis for VMAT.

  • PDF

Distortion of the Dose Profile in a Three-dimensional Moving Phantom to Simulate Tumor Motion during Image-guided Radiosurgery (방사선수술에서 종양 움직임을 재현시킨 움직이는 팬텀을 이용하여 선량 분포의 왜곡에 대한 연구)

  • Kim, Mi-Sook;Ha, Seong-Hwan;Lee, Dong-Han;Ji, Young-Hoon;Yoo, Seong-Yul;Cho, Chul-Koo;Yang, Kwang-Mo;Yoo, Hyung-Jun;Seo, Young-Seok;Park, Chan-Il;Kim, Il-Han;Ye, Seong-Jun;Park, Jae-Hong;Kim, Kum-Bae
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.268-277
    • /
    • 2007
  • Purpose: Respiratory motion is a considerable inhibiting factor for precise treatment with stereotactic radiosurgery using the CyberKnife (CK). In this study, we developed a moving phantom to simulate three-dimensional breathing movement and investigated the distortion of dose profiles between the use of a moving phantom and a static phantom. Materials and Methods: The phantom consisted of four pieces of polyethylene; two sheets of Gafchromic film were inserted for dosimetry. Treatment was planned to deliver 30 Gy to virtual tumors of 20, 30, 40, and 50 mm diameters using 104 beams and a single center mode. A specially designed robot produced three-dimensional motion in the right-left, anterior-posterior, and craniocaudal directions of 5, 10 and 20 mm, respectively. Using the optical density of the films as a function of dose, the dose profiles of both static and moving phantoms were measured. Results: The prescribed isodose to cover the virtual tumors on the static phantom were 80% for 20 mm, 84% for 30 mm, 83% for 40 mm and 80% for 50 mm tumors. However, to compensate for the respiratory motion, the minimum isodose levels to cover the moving target were 70% for the $30{\sim}50$ mm diameter tumors and 60% for a 20 mm tumor. For the 20 mm tumor, the gaps between the isodose curves for the static and moving phantoms were 3.2, 3.3, 3.5 and 1.1 mm for the cranial, caudal, right, and left direction, respectively. In the case of the 30 mm tumor, the gaps were 3.9, 4.2, 2.8, 0 mm, respectively. In the case of the 40 mm tumor, the gaps were 4.0, 4.8, 1.1, and 0 mm, respectively. In the case of the 50 mm diameter tumor, the gaps were 3.9, 3.9, 0 and 0 mm, respectively. Conclusion: For a tumor of a 20 mm diameter, the 80% isodose curve can be planned to cover the tumor; a 60% isodose curve will have to be chosen due to the tumor motion. The gap between these 80% and 60% curves is 5 mm. In tumors with diameters of 30, 40 and 50 mm, the whole tumor will be covered if an isodose curve of about 70% is selected, equivalent of placing a respiratory margin of below 5 mm. It was confirmed that during CK treatment for a moving tumor, the range of distortion produced by motion was less than the range of motion itself.