• Title/Summary/Keyword: Stereoscopic video codec

Search Result 13, Processing Time 0.02 seconds

Adaptive Pre-/Post-Filters for NRT-Based Stereoscopic Video Coding

  • Lee, Byung-Tak;Lee, BongHo;Choi, Haechul;Kim, Jin-Soo;Yun, Kugjin;Cheong, Won-Sik;Kim, Jae-Gon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.666-673
    • /
    • 2012
  • Non-real-time delivery of stereoscopic video has been considered as a service scenario for 3DTV to overcome the limited bandwidth in the terrestrial digital television system. A hybrid codec combining MPEG-2 and H.264/AVC has been suggested for the compression of stereoscopic video for 3DTV. In this paper, we propose a stereoscopic video coding scheme using adaptive pre-/post-filters (APPF) to improve the quality of 3D video while retaining compatibility with legacy video coding standards. The APPF are applied adaptively to blocks of various sizes determined by the macroblock coding mode and reference frame index. Experiment results show that the proposed method achieves up to 24.86% bit rate savings relative to a hybrid codec of MPEG-2 and H.264/AVC including the inter-view prediction.

Stereoscopic Video Coding for Subway Accident Monitoring System (지하철 사고 감시를 위한 스테레오 비디오 부호화 기법)

  • Kim Gil-Dong;Park Sung-Hyuk;Lee Hanmin;Oh Seh-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.559-565
    • /
    • 2005
  • In this paper, we propose a stereoscopic video coding scheme for subway accident monitoring system. The proposed designed for providing flexible video among various displays, such ass control center, station employees and train driver. We uses MPEG-2 standard for coding the left-view sequence and IBMDC coding scheme predicts matching block by interpolating both motion and disparity predicted macroblocks. To provide efficient stereoscopic video service, we define both temporally and spatially scalable layers for each eye's-view by using the concept of Spatio-Temporal scalability. The experimental results show the efficiency of proposed coding scheme by comparison with already known methods and the advantages of disparity estimation in terms of scalability overhead. According to the experimental results, we expect the proposed functionalities will play a key role in establishing highly flexible stereoscopic video codec for ubiquitous display environment where devices and network connections are heterogeneous.

Application of Adaptive Loop Filter for NRT-Based Stereoscopic Video Coding (비실시간 기반 스테레오스코픽 비디오 부호화를 위한 적응루프필터 적용기법)

  • Lee, Byung-Tak;Lee, BongHo;Choi, Haechul;Kim, Jin-Soo;Yun, Kugjin;Cheong, Won-Sik;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2013
  • A stereoscopic 3D video service is able to provide a 3D video service while keeping backward compatibility with the existing 2D video service. In the terrestrial digital television (DTV) system, a stereoscopic video codec is required to have high coding efficiency in order to provide a 3D video service in the same channel capacity. A hybrid codec consisting of MPEG-2 for base video and H.264/AVC or HEVC for 3D auxiliary video is considered. Furthermore, Non-Real-Time (NRT) delivery of stereoscopic video is also considered as a service scenario for 3DTV services to overcome the limited bandwidth. In this paper, we propose a stereoscopic video coding scheme using adaptive loop filter (ALF) which had been considered in HEVC as a pre-/post-filter for enhancing coding efficiency in NRT-based 3DTV services. In order to apply ALF as a post-filter to the reconstructed additional view coded by H.264/AVC, we devise a method in which ALF is adaptively applied based on a structure determined by using macroblock (MB) coding information such as MB mode type and reference index instead of coding unit (CU) structure on which ALF is applied in the HEVC. Experimental results shows that the proposed stereoscopic video coding scheme applying ALF obtains up to 24.9% gain of bit saving.

Efficient Multiplexing Scheme of Stereoscopic Video Sequences for Digital Broadcasting Services

  • Yun, Kug-Jin;Kim, Kyu-Heon;Hur, Nam-Ho;Lee, Soo-In;Park, Gwang-Hoon
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.961-964
    • /
    • 2010
  • This letter introduces a stereoscopic video broadcasting system that provides 3D visual service and has full backward compatibility with legacy digital television (DTV) service in the same channel capacity. The proposed stereoscopic video broadcasting system in this letter is composed of both a hybrid codec and a multiplexer with a newly defined stereoscopic-related signaling method. In conclusion, the proposed method can be effectively applied for 3D broadcasting services without major changes in legacy broadcasting platforms.

Stereoscopic Video Coding for Subway Accident Monitoring System (지하철 사고 감시를 위한 스테레오 비디오 부호화 기법)

  • Oh, Seh-Chan;Kim, Gil-Dong;Park, Sung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.484-486
    • /
    • 2005
  • Passenger safety is a primary concern of railway system but, it has been urgent issue that dozens of people are killed every year when they falloff from train platforms. Recently, advancements in IT have enabled applying vision sensors to railway environments, such as CCTV and stereo camera sensors. In this paper, we propose a stereoscopic video coding scheme for subway accident monitoring system. The proposed scheme is designed for providing flexible video among various displays, such as control center, station employees and train driver. We uses MPEG-2 standard for coding the left-view sequence and IBMDC for predicting the P- and B-types of frames of the right-view sequence. IBMDC predicts matching block by interpolating both motion and disparity predicted macroblocks. To provide efficient stereoscopic video service. we define both temporally and spatially scalable layers for each eye's-view by using the concept of Spatio-Temporal scalability. According to the experimental results. we expect the proposed functionalities will play a key role in establishing highly flexible stereoscopic video codec for ubiquitous display environment where devices and network connections are heterogeneous.

  • PDF

An Efficient Coding Method for Stereoscopic Videos using HEVC (HEVC를 이용한 양안식 영상의 효율적인 부호화 방법)

  • Hwang, Soo-Jin;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.721-726
    • /
    • 2011
  • The compression performance of HEVC (high efficiency video coding) is improved 40%, compared to H.264/AVC. Since the existing 3D video CODEC is based on H.264/AVC or MPEG-2, we can improve the compression performance when we use the proposed stereoscopic video coding method based on HEVC. Since the stereoscopic video has the temporal and inter-view correlations, the videos of the left and right cameras encode together to improve the performance. Especially, we implemented the proposed technique using HM(HEVC test model) 3.4. To compare the performance of the proposed method, we only compare the right view video which is coded using the inter-view prediction. The proposed method which is considered inter-view correlation is improved the performance which BDBR reduce about 36.24% and BDPSNR increase approximately 1.19 dB compared to the separated-coding method.

Design of 3D Video Delivery Format for HTTP Adaptive Streaming Service (3D 비디오의 HTTP 적응적 스트리밍을 위한 전송규격 설계)

  • Lee, Jang-Won;Kim, Kyu-Heon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.584-595
    • /
    • 2012
  • Recently, 3D stereoscopic video and HTTP adaptive streaming technologies have received a lot of attention from relevant industrial fields and markets in terms of multimedia contents and delivery services, respectively. It is expected that promising and marketable service models can be created by means of these noticeable two technologies. However, current standard specifications do not provide a method for organized connection between those two technologies. 3D stereoscopic video services are weighted in broadcasting and storage services that are only available under environments in which the network bandwidth is guaranteed or free. Also, HTTP adaptive streaming technologies only provide plain 3D service methods that are dependent on particular Codec. Therefore, this paper proposes 3D video delivery format for HTTP adaptive streaming service which enables stable and seamless display for various stereoscopic video sequences over internet networks. The proposed technology is designed on the basis of Stereoscopic Video Application Format which is a service-oriented standard specification for storing stereoscopic video sequences. Also, this delivery format is directly applicable over DASH that is the representative standard technology for HTTP adaptive streaming services. The delivery format proposed in this paper has been submitted to MPEG and it has been accepted as a working draft, thus it expected to pave the way for practical industrialization in relevant fields from now on.

Method for Applying Wavefront Parallel Processing on Cubemap Video (큐브맵 영상에 Wavefront 병렬 처리를 적용하는 방법)

  • Hong, Seok Jong;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.401-404
    • /
    • 2017
  • The 360 VR video has a format of a stereoscopic shape such as an isometric shape or a cubic shape or a cubic shape. Although these formats have different characteristics, they have in common that the resolution is higher than that of a normal 2D video. Therefore, it takes much longer time to perform coding/decoding on 360 VR video than 2D Video, so parallel processing techniques are essential when it comes to coding 360 VR video. HEVC, the state of art 2D video codec, uses Wavefront Parallel Processing (WPP) technology as a standard for parallelization. This technique is optimized for 2D videos and does not show optimal performance when used in 3D videos. Therefore, a suitable method for WPP is required for 3D video. In this paper, we propose WPP coding/decoding method which improves WPP performance on cube map format 3D video. The experiment was applied to the HEVC reference software HM 12.0. The experimental results show that there is no significant loss of PSNR compared with the existing WPP, and the coding complexity of 15% to 20% is further reduced. The proposed method is expected to be included in the future 3D VR video codecs.

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.

MRBR-based JPEG2000 Codec for Stereoscopic Image Compression of 3-Dimensional Digital Cinema (3차원 디지털 시네마의 스테레오 영상 압축을 위한 MRBR기반의 JPEG2000 코덱)

  • Seo, Young-Ho;Sin, Wan-Soo;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2146-2152
    • /
    • 2008
  • In In this paper, we proposed a new JPEG2000 codec using multiresolution-based rendering (MRBR) technique for video compression of 3-dimensional digital cinema. We introduced discrete wavelet transform (DWT) for stereoscopic image and stereo matching technique in the wavelet domain. The disparity was extracted using stereo matching and transmitted with the reference (left) image. Since the generated right image was degraded by the occlusion lesion, the residual image which is generated from difference between the original right image and the generated one was transmitted at the same tine. The disparity data was extracted using the dynamic programming method in the disparity domain. There is high correlation between the higher and lower subbands. Therefore we decreased the calculation amount and enhanced accuracy by restricting the search window and applying the disparity information generated from higher subband.