• Title/Summary/Keyword: Stereoscopic display

Search Result 226, Processing Time 0.043 seconds

STEREOSCOPIC EYE-TRACKING SYSTEM BASED ON A MOVING PARALLAX BARRIER

  • Chae, Ho-Byung;Lee, Gang-Sung;Lee, Seung-Hyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.189-192
    • /
    • 2009
  • We present a novel head tracking system for stereoscopic displays that ensures the viewer has a high degree of movement. The tracker is capable of segmenting the viewer from background objects using their relative distance. A depth camera is used to generate a key signal for head tracking application. A method of the moving parallax barrier is also introduced to supplement a disadvantage of the fixed parallax barrier that provides observation at the specific locations.

  • PDF

Time Series Evaluation of Visual Fatigue and Depth Sensation Using a Stereoscopic Display

  • Kim, Sang-Hyun;Kishi, Shinsuke;Kawai, Takashi;Hatada, Toyohiko
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.188-194
    • /
    • 2009
  • Conventional stereoscopic (3D) displays using binocular parallax generate unnatural conflicts between convergence and accommodation. These conflicts can affect the observer's ability to fuse binocular images and may cause visual fatigue. In this study, time series changes in visual fatigue and depth sensation when viewing stereoscopic images with changing parallax were examined. In particular, the physiological changes, including the subjective symptoms of visual fatigue, when viewing five parallax conditions, were examined. Then a comparative analysis of the 2D and 3D conditions was performed based on the visual function. To obtain data regarding the visual function, the time series changes in the spontaneous-blinking rate before and during the viewing of 3D images were measured. The time series change results suggest that 2D and 3D images cause significantly different types of visual fatigue over the range of binocular disparity.

A Method to Compensate a Luminance Distortion of a Time-multiplexing Spatially Interlaced Stereoscopic Three-dimensional Display

  • Park, Minyoung;Choi, Hee-Jin
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.436-442
    • /
    • 2018
  • In a spatially interlaced stereoscopic (SIS) three-dimensional (3D) display to be realized by providing the observer a part of left-eye/right-eye images, a loss of information can be perceived due to the un-shown part of each image. In order to resolve that problem, an improved SIS 3D display is proposed to deliver the images without loss of information to the observer using a time-multiplexing scheme. However, that time-multiplexing SIS also has a problem of luminance distortion when the desired luminance is not shown due to an insufficient response of the liquid crystal cell. In this paper, we propose a new method by optimizing the image data to show correct luminance with minimum distortion.

Sequential Stereoscopic Display System based on a Volume Holographic Memory (체적 홀로그래픽 메모리를 이용한 스테레오스코픽 동영상 디스플레이 시스템)

  • Lee, Seung-Hyeon;Seon, Gwang-Cheol;Kim, Eun-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.22-27
    • /
    • 2000
  • We present a sequential stereoscopic display system using volume holographic storage. Multiple angular multiplexed stereoscopic image pairs are recorded into a photorefractive crystal that can store data with high density, transfer them with high speed, and select a randomly chosen data element. The reference beam with Bragg selectivity is scattered by the index grating and the diffracted beams are propagating along the directions of the stereoscopic image pairs. The images are to be suitably projected on the left and right display plane sequentially for stereoscopic video viewing.

  • PDF

Development of a Interactive Stereoscopic Image Display System using Invisible Interaction Surface Generation (비가시성 인터랙션 표면 생성을 통한 인터랙티브 입체영상 시연 시스템 개발)

  • Lee, Dong-Hoon;Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.371-379
    • /
    • 2011
  • In this paper, we propose a development methodology of interactive stereoscopic image display system. In our case, we consider a multiple touch recognition technique as the interaction method. That's because we want to guarantee multiple user access and interaction to the content without any restriction. In this case, however, some restrictions are occurred on account of the distance between display and participants. For this reason, this paper propose an invisible interaction surfaces which are generated in the air. This surface is utilized as interaction medium instead of the display wall. We also present an effective way to generate and edit interactive stereoscopic images based on Game Engine.

Implementation of Multiview Stereoscopic 3D Display System using Volume Holographic Lenticular Sheet (VHLS 광학판 기반의 다시점 스테레오스코픽 3D 디스플레이 시스템의 구현)

  • 이상우;이맹호;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.716-725
    • /
    • 2004
  • In this paper, a new multiview stereoscopic 3D display system using a VHLS(volume holographic lenticular sheet) is suggested. The VHLS, which acts just like an optical direction modulator, can be implemented by recording the diffraction gratings corresponding each directional vector of the multiview stereoscopic images in the holographic recording material by using the angularly multiplexed recording property of the conventional volume hologram. Then, this fabricated VHLS is attached to the panel of a LCD spatial light modulator and used to diffract each of the multiview image loaded in a SLM to the corresponding spatial direction for making a 3D stereo view-zone. Accordingly, in this paper, the operational principle and characteristics of the VHLS are analyzed and an optimized 4-view VHLS is fabricated by using a commercial photopolymer. Then, a new VHLS-based 4-view stereoscopic 3D display system is implemented. Through some experimental results using a 4-view image synthesized with adaptive disparity estimation algorithm, it is suggested that implementation of a new VHLS-based multiview stereoscopic 3D display system can be possible.

Method of Display and Processing of Binocular Stereoscopic Image for 3D Endoscopy (3차원 내시경술을 위한 양안 입체 영상처리 및 디스플레이 방법)

  • 송철규
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.531-538
    • /
    • 1998
  • This paper represents the design of 3D endoscopic image processing system in order to Improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. The proposed 3D systems have four features of stereo endoscopic image processing The multiplexer give field seauential stereo for recording and for aligning cameras and viewing stereo with 3D monitor. Demultiplexing of the field sequential image which separates out the R and L images for dual TFT-LCD 3D monitor viewed with passive polarized glasses. separable processing of the left and right eye images, and design of TFT-LCD 3D monitor. The viewing angle, zone, and image quality of the Polarization-type Stereoscopic Display (SM500TFT-3D) system which we have developed using 15 Samsung TFT-1.CD with a screen resolution of 1024×768 pixels were measured and compared with those of Electric Shutter-type Stereoscopic Display system. The result of experiments shows that the Polarization-type Stereoscopic Display System using TFT-LCD has a wade viewing angle and zone which Is necessary fort multi-view and it has better image quality and stability of the optical performances than the Electric Shutter-type does.

  • PDF

Recent LCD driving technologies for stereoscopic FHD 3D display system

  • Choi, Hee-Jin;Lee, Jun-Pyo;Kim, Jung-Won;Kim, Seon-Ki;Kim, Nam-Deog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.438-440
    • /
    • 2009
  • In this paper, we describe the latest LCD driving technology which helps to realize the stereoscopic 3D display system with FHD resolution by using the 240Hz LCD panel. The 240Hz LCD system has two times more data than current 120Hz and can cover the crosstalk due to the progressive scan.

  • PDF

Development of an Immersive VR Display System Supporting Continuous Arrangement of Multiple Screens (다중스크린의 연속적인 배치를 지원하는 몰입형 가상환경 디스플레이 시스템의 개발)

  • 남상훈;채영호;강재훈
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 2002
  • The suggested modular projection system can have flexible arrangements of screens. Modular and continuous arrangements of the display system enable us to modify the screen configuration easily, so that the system can be used in various applications. The image of each screen is calculated automatically by using window projection and the tracked position of the viewer. This system also uses the off-axis stereoscopic projection for the seamless stereoscopic edge blending of multiple connections of screens. The system has been successfully tested for the general navigation model and the CAU driving simulator with motion platform.

Resolution of Temporal-Multiplexing and Spatial-Multiplexing Stereoscopic Televisions

  • Kim, Joohwan;Banks, Martin S.
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.34-44
    • /
    • 2017
  • Stereoscopic (S3D) displays present different images to the two eyes. Temporal multiplexing and spatial multiplexing are two common techniques for accomplishing this. We compared the effective resolution provided by these two techniques. In a psychophysical experiment, we measured resolution at various viewing distances on a display employing temporal multiplexing, and on another display employing spatial multiplexing. In another experiment, we simulated the two multiplexing techniques on one display and again measured resolution. The results show that temporal multiplexing provides greater effective resolution than spatial multiplexing at short and medium viewing distances, and that the two techniques provide similar resolution at long viewing distance. Importantly, we observed a significant difference in resolution at the viewing distance that is generally recommended for high-definition television.