• Title/Summary/Keyword: Stereoscopic Display

Search Result 227, Processing Time 0.027 seconds

The development of 42' 2D/3D switchable display

  • Kang, H.;Jang, M.K.;Kim, K.J.;Ahn, B.C.;Yeo, S.D.;Park, T.S.;Jang, J.W.;Lee, K.I.;Kim, S.T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1311-1313
    • /
    • 2006
  • Stereoscopic/autostereoscopic systems have been developed in order to express true 3D images, but have never had great success in the practical use. In order to apply 3D display to promising applications such as advertisements and games, we've developed a 42" 2D/3D switchable display. It has characteristics that don't require special glasses for 3D images, use multi-view technology for improving 3D viewing characteristics, and has a 2D/3D switching function to express dynamic 3D contents as well as conventional 2D contents.

  • PDF

Volumetric Image System for High Efficiency Video Coding (고효율 비디오코딩을 위한 입체영상시스템)

  • Kim, Sang Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.515-520
    • /
    • 2016
  • Volumetric image system has many applications recently in education, 3D movie, medical images but these applications have several problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for realtime display. In case of stereo system for volumetric display motion vectors, disparity vectors from the stereoscopic sequences and residual images with the reference images has been transmitted, and the stereoscopic sequences have been reconstructed at the receiver for volumetric display. So central issue for the design of efficient volumetric image system lies in selecting an appropriate stereo matching and robust vision system. In this paper, we proposed high efficient vision system, which design vision stage with rotating and moving horizontally, and match the successive stereo image efficiently. In experimental results with volumetric image system, the proposed method represents high efficiency with minimizing error and low computational load for volumetric display.

Feature-based Disparity Correction for the Visual Discomfort Minimization of Stereoscopic Video Camera (입체영상의 시각 피로 최소화를 위한 특징기반 시차 보정)

  • Jung, Eun-Kyung;Kim, Chang-Il;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.77-87
    • /
    • 2011
  • In this paper, we propose a disparity correction technique to reduce the inherent visual discomfort while watching stereoscopic videos. The visual discomfort must be solved for commercial 3D display systems to provide natural stereoscopic videos to human eyes. The proposed disparity correction technique consists of horizontal and vertical disparity corrections. The horizontal disparity correction is implemented by controlling the depth budget of stereoscopic video using the geometric relations of a stereoscopic camera system. In addition, the vertical disparity correction is implemented by using a feature-based stereo matching algorithm. Conventional vertical disparity corrections have been done by only using camera calibration parameters, which still cause systematic errors in vertical disparities. In this paper, we minimize the vertical disparity as small as possible by using a feature-based correction algorithm. Through the comparisons of conventional feature-based correction algorithms, we analyze the performance of the proposed technique.

Visual Discomfort Analysis of Binocular Depth Change on 3D Stereoscopic Imaging (입체영상의 양안 깊이 변화에 따른 시청 피로도 분석)

  • Kim, Nam-Gyu
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2015
  • The development of stereoscopic display hardwares and 3D authoring softwares expands its application areas from particular virtual simulation applications to general movies, games, advertising applications. However, the binocular-based 3D stereoscopic images cause fatigue to viewers. Recent performed many research results about the binocular stereoscopy's depth perception and viewers' fatigue are derived from experimental users studies. In some results, watching and making guidelines for 3D stereoscopic imaging contents are introduced. The 3D stereoscopic-related contents have the contradictory aspects, which are audiences' pursuit of a tolerable minimum fatigue and producer's its of excessive depth changes for providing viewers' immersion. This paper provides user experiments and analysis data in aspects of 3D depth changes. For use of producers, a safety zone and translational velocity of 3D depth changes are introduced. Also, on the viewer side, we present the depth change adaptation time by using an EEG device.

Optical system design for stereoscopic video-recorder (비디오 입체영상녹화를 위한 광학계 설계)

  • Hong, Kyung-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.506-509
    • /
    • 2002
  • An optical system for a stereoscopic video recorder is designed with the field of view 42$^{\circ}$ and effective diameter 22 mm. We can use it by attaching it to the front lens of any video camera or camcorder to record a stereoscopic scene. This system is a double Kepler type afocal system to make the image erect and a bi-ocular type to record and display the stereoscopic scene. The optical tube length is folded with several flat mirrors and a beam splitter to be compact. This optical system is composed of 4 groups of lenses and each group serves as a relay lens for minimizing the vignetting effect. Whole field stereoscopic scenes may be captured by perpendicularly polarized alternated recording with a chopper and two perpendicular polarizers, without any loss of light energy. The displayed images may be seen stereoscopically with polarized spectacles and are kinetic because of an afterimage effect.

The Method for Estimating Stereoscopic Object Position with Horizontal-Moving Camera (수평이동방식 입체카메라의 입체영상의 결상 위치 추정 방법)

  • Lim, Young-Tae;Kim, Nam;Kwon, Ki-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.532-536
    • /
    • 2006
  • The position of stereoscopic objects is an important parameter to induce three-dimensional effects such as convergence control and image distortions. There are three kinds of stereoscopic cameras : Parallel, Toed-in, and Horizontal-Moving cameras. In this paper we proposed the method for estimating stereoscopic object position with a horizontal-moving camera. In the previous methods, viewing angle ratios are used to estimate the object positions. Our method based on the horizontal movements of the camera to estimate the positions. Using geometrical models of shooting and display we experimented with two methods. Results of experiments showed the distance of stereoscopic objects on virtual screen related to horizontal movement.

Future of Stereoscopic 3D through the Analysis of Realistic Media Art (실감미디어 아트 분석을 통한 3D 입체영상의 미래 조망)

  • Kim, Hee-Young;Shin, Chang-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.91-102
    • /
    • 2012
  • Generally today's culture and the arts industry has been focusing more on economic value than the arts. Therefore this paper will elucidate the meaning of the culture and the arts can be a break though which can only include commercial and economic values but transcend its values ultimately. First of all, this paper will suggest an advanced 3D stereoscopic images by analysis of examples and environments of realistic media arts. Looking into the changes of related technologies and market environments, the motion-recognition technology, as seem in SF film "Minority report", has become a feasible technology. In the past, 3D stereoscopic images were shown in the theme park theatre and exhibition halls for group viewing. but recent 3D TV and display devices have changed those environments to personal. Since domestic researches of realistic media art has been little, this paper will analyze them respecting to three broad classifications. The results are : Firstly, in CAVE method, more impact capabilities of spectators are expected that they can manipulate interactive interfaces freely and the physical movements of spectators can operate interactively. Secondly, inter-network communications and expansion of viewers' perceptions are predicted by way of HMD method, sensor suites and communication equipments. Thirdly, combinations of HMD and motion tracking utilization is foreseen. With the convergent usages of these three features, we can prospect the possibilities of interactive 4D that spectators wearing 3D stereoscopic display devices can experience and make their own 3D stereoscopic images actively at the point of their views.

The correct depth representation in displayed space at stereoscopy

  • Lee, Kwnag-Hoon;Kim, Dong-Wook;Kim, Soo-Ho;Hur, Nam-Ho;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.707-709
    • /
    • 2008
  • We proposed the method to present corrected depth cue to an observer by stereoscopic display. It was performed in sequence that designing the displayed space having a constant interval of depth and then defining the object space which had considered to an environment of display and based on computer graphics. Consequently, we had performed a different process of reported existing methods distinctively and taken the result which correctly designed depth cue having linearity whatever various sizes of display would be used.

  • PDF

Method to Reduce the Cross-talk in 3D PDP TV

  • Kim, Dae-Hun;Lee, Jun-Hak;Kim, Tae-Hyung;Moon, Sung-Hak;Kim, Seong-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.513-516
    • /
    • 2009
  • The cross-talk, which occurs due to the phosphor decay time, is a critical problem in the 3D PDP TV. First, we investigated the factors that affected the cross-talk in waveforms. After the investigation, we designed the driving waveforms for the 3D PDP TV. We also obtained a better result by controlling the driving timing of 3D active glasses.

  • PDF

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.