• Title/Summary/Keyword: Stereo X-ray Image

Search Result 13, Processing Time 0.027 seconds

The Study of the Geometric Structure Optimization for the Stereo X-ray Inspection System Using the Calibration (Calibration을 통한 스테레오 X-ray 검색장치의 기하구조 최적화 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Lee, Seung-Min;Park, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3422-3427
    • /
    • 2010
  • In this paper, we presents a sensor calibration technique using stereo X-ray images to provide efficient inspection of fast moving cargo objects. Stereo X-ray scanned images are acquired from a specially designed equipment which consists of a X-ray source, dual-linear array detector, and a conveyor system. Dual detector is installed so that rectified stereo X-ray images of objects are acquired. Using the stereo X-ray images, we carry out a sensor calibration to find the correspondences between the images and reconstruct 3-D shapes of real objects. Using the Image acquired from the stereo detectors with varying distances, we calculated the GCP(ground control point)of the image. And we figure out the error by comparing calculated GCP and GCP of the real object. The experimental results show the proposed technique can enhance the accuracy of stereo matching and give more efficient visualization for cargo inspection image.

A Study on Stereo Visualization of the X-ray Scanned Image Based on Dual-line Sensors (듀얼센서 기반 X-선 검색영상 스테레오 가시화 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2083-2090
    • /
    • 2010
  • This paper presents a 3-D visualization technique using stereo radioactive images to provide efficient inspection of fast moving cargo objects. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment. Stereo radioactive images are acquired from a specially designed equipment which consists of a X-ray source, linear radioactive sensors, and a moving stage. Two radioactive sensors are installed so that rectified stereo X-ray images of objects are acquired. Using the stereo X-ray images, we run a matching algorithm to find the correspondences between the images and reconstruct 3-D shapes of real objects. The objects are put in a parallelepiped box to simulate cargo inspection. Three real objects are tested and reconstructed. Due to the inherent ambiguity in the stereo X-ray images, we reconstruct 3-D shapes of the edges of the objects. The experimental results show the proposed technique can provide efficient visualization for cargo inspection.

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.

The study of the stereo X-ray system for automated X-ray inspection system using 3D-reconstruction shape information (3차원 형상복원 정보 기반의 검색 자동화를 위한 스테레오 X-선 검색장치에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2043-2050
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. As a radiation image is just the density information of the scanned object, the direct application of general stereo image processing techniques is inefficient. So we propose that a new volume-based 3-D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for X-ray inspection. For validation of the proposed shape reconstruction algorithm using volume, 15 samples were scanned and reconstructed to restore the shape using an X-ray stereo inspection system. Reconstruction results of the objects show a high degree of accuracy compared to the width (2.56%), height (6.15%) and depth (7.12%) of the measured value for a real object respectively. In addition, using a K-Mean clustering algorithm a detection efficiency of 97% is achieved. The results of the reconstructed shape information using the volume based shape reconstruction algorithm provide the depth information of the inspected object with stereo X-ray inspection. Depth information used as an identifier for an automated search is possible and additional studies will proceed to retrieve an X-ray inspection system that can greatly improve the efficiency of an inspection.

Three Dimensional Volume Reconstruction of Polyhedral Objects Using X-ray Stereo Images

  • Roh, Young-Jun;Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.2-28
    • /
    • 2001
  • Three dimensional shape measurement techniques are widely needed in industries for product quality monitoring and control. X-ray imaging method is a promising technology to achieve three-dimensional Information, both the surface and inner structure of an object, since it can overcome the limitations of conventional visual or optical methods such as an occlusion problem or surface reflection properties. In this paper, we propose three dimensional volume reconstruction method based on x-ray stereo imaging technology. Here, the stereo images of an object from two different views are taken by changing the object pose rather than moving imaging plane as in conventional stereo vision method. We propose a series of image processing techniques to extract the features efficiently from x-ray images, where the occluded features in case of normal camera vision could be found ...

  • PDF

The Study for the Efficient scanning of Stereo X-ray System (스테레오 X-ray 시스템 검색기능 개선 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Park, Jong-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.884-886
    • /
    • 2012
  • As the existing radiation Scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. Two-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. In this paper, we enhanced the scanning efficiency of the stereo X-ray inspection system using the precision control module.

  • PDF

The Study for the Reconstruction of two objects using the Stereo X-ray Inspection System (스테레오 X-선 검색장치를 이용한 이중물체 형상복원 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Park, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4152-4158
    • /
    • 2012
  • The Stereo X-ray inspection system is designed for effectively providing the additional information of objects than the conventional inspection system that offers only 2D cross-section of objects. We studied the geometric improvement of the stereo X-ray inspection system, the stereo matching algorithm of the single object using the edge and the volume reconstruction method for the inspected object. In this paper, we conduct a matching algorithm to find the correspondences between the images and reconstruct 3-D shapes of real objects using the stereo X-ray images. Also, we apply a new 3D reconstruction algorithm for the discrimination of two objects. For the separation of the overlapping objects, we calculate the vector of the object and divide inner and outer voxel of objects. And for the elimination of the overlapping area, we study the reconstruct 3D shapes using the threshold based Z-axis. The experimental results show that the proposed technique can enhance the accuracy of stereo matching and give more efficient visualization for overlap objects in the restricted environment.

The Study of automated inspection technology using a three-dimensional reconstruction of stereo X-ray image based dual-sensor Environment (Dual-Sensor 기반 스테레오 X-선 영상의 3차원 형상복원기술을 이용한 검색 자동화를 위한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Kim, Jong-Ryul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.695-698
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. In this paper, we proposed a new volume based 3D reconstruction algorithm and experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for the development of the high speed and more efficient non-destructive auto inspection system.

  • PDF

3D Inspection by Registration of CT and Dual X-ray Images

  • Kim, Youngjun;Kim, Wontae;Lee, Deukhee
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • Computed tomography (CT) can completely digitize the interior and the exterior of nearly any object without any destruction. Generally, the resolution for industrial CT is below a few microns. The industrial CT scanning, however, has a limitation because it requires long measuring and processing time. Whereas, 2D X-ray imaging is fast. In this paper, we propose a novel concept of 3D non-destructive inspection technique using the advantages of both micro-CT and dual X-ray images. After registering the master object’s CT data and the sample objects’ dual X-ray images, 3D non-destructive inspection is possible by analyzing the matching results. Calculation for the registration is accelerated by parallel computing using graphics processing unit (GPU).

The Geometric Modeling for 3D Information of X-ray Inspection (3차원 정보 제공을 위한 X-선 검색장치의 기하학적 모델링)

  • Lee, Heung-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1151-1156
    • /
    • 2013
  • In this study, to clearly establish the concept of a geometric modeling I apply for the concept of Pushbroom, limited to two-dimensional radiation Locator to provide a three-dimensional information purposes. Respect to the radiation scanner Pushbroom modeling techniques, geometric modeling method was presented introduced to extract three-dimensional information as long as the rotational component of the Gamma-Ray Linear Pushbroom Stereo System, introduced the two-dimensional and three-dimensional spatial information in the matching relation that can be induced. In addition, the pseudo-inverse matrix by using the conventional least-squares method, GCP(Ground Control Point) to demonstrate compliance by calculating the key parameters. Projection transformation matrix is calculated for obtaining three-dimensional information from two-dimensional information can be used as the primary relationship, and through the application of a radiation image matching technology will make it possible to extract three-dimensional information from two-dimensional X-ray imaging.