• Title/Summary/Keyword: Stepping Motors

Search Result 78, Processing Time 0.023 seconds

Nano Drive Technology for Stepping Motors Based on Computational Intelligence

  • Hirota, Kaoru;Yubazaki, Naoyoshi;Muto, Akira;Okumura, Kenji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.427-430
    • /
    • 2003
  • Nano drive control of five phase stepping motors is developed based on computational intelligence technology and it enables to drive into 5 million equiangular parts per revolution with keeping normal speed and torques. The experimental results of realizing high resolution/accuracy with low vibration and decreasing both heat loss and electric power consumption are mentioned.

  • PDF

A Study on The Rotor Position Detection of Bifilar-Wound Hybrid Stepping Motors (복권형 하이브리드 스테핑 전동기의 회전자 위치 검출에 대한 연구)

  • Yu, K.N.;You, J.-Bong;Woo, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.187-191
    • /
    • 1997
  • In this paper, we show that the rotor position of the bifilar-wound hybrid stepping motors for the closed-loop drives is detected by the phase current measurement. We propose an instantaneous phase current equation, which is the function of electrical angle, by the modeling of the stepping motor including motor driving circuits. We also analyze the relationship between phase current and rotor position from the computer simulation results. It is shown that the information about the rotor position is obtained from the phase current amplitude and its derivatives at the instance of ${\pi}/2$ electrical angle of excitation voltage.

  • PDF

3-Dimensional Analysis of Permanent Magnet Stepping Motor With Claw Poles (전자정보기기 구동용 영구자석형 스테핑 모터의 3차원 해석)

  • An, Ji-Hyun;Park, Seung-Chan;Rhyu, Se-Hyun;Jung, In-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.107-109
    • /
    • 2004
  • Stepping motors are widely used for various electric instruments. In case of analysing claw pole PM slopping motor 3-dimensional analysis is necessary for accurate field calculation. This paper presents static torque characteristics of a permanent magnet type stepping motor with claw poles using three-dimensional finite element analysis.

  • PDF

Cogging Force Reduction of Two Phase Linear Hybrid Stepping Motor (2상 선형 하이브리드 스테핑 전동기의 코깅 리플 저감)

  • Hwarg, Tai-Sik;Seok, Jul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.96-98
    • /
    • 2005
  • This paper presents a new two-phase linear hybrid stepping motors (LHSM), which has two windings per phase and one of them shares the other phase winding. The proposed motor shows a unique ability to deliver low cogging force without any particular complex control scheme and additional power electronics hardware in micro stepping control. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed design.

  • PDF

Research for Stepping Motor Using Piezoelectric Torsional Actuator (압전회전작동기를 이용한 스텝모터에 관한 연구)

  • Kim Jun Hyuk;Kim Jaehwan;Chung Dal Do
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.499-505
    • /
    • 2005
  • In this paper, a new type of pi+ezoelectric stepping motor is designed, manufactured and tested. This motor is composed of piezoelectric torsional actuator and a pair of one-way clutch bearings. The torsional actuator consists of 16-polygonal tube of piezoceramic that can produce an angular displacement associated with shear mode. One-way clutch bearing converts oscillation of torsional actuator into a continuous stepping rotation. The proposed stepping motor does not require any conversion mechanism for stepping motion like any other motors. In the design process, the shear resonance mode of piezoelectric actuator is analyzed by using a commercial finite element analysis program, and the performance of the fabricated torsional actuator is measured. $0.124^{\circ}$ of maximum angular displacement is measured in square wave excitation on the actuator only. The stepping motor is manufactured by assembling a pair of one-way clutch bearings and the torsional actuator. The maximum rotation speed of 72rpm and the blocking torque of 3.136 mNm are measured at 3540 Hz and 100V/mm. Once the proposed piezoelectric stepping motor is miniaturized, it can be used for many compact and precise moving applications.

High Performance Control of Linear Hybrid Stepping Motor with Force Ripple Compensator (추력 리플을 보상하는 선형 하이브리드 스테핑 전동기의 고성능 제어)

  • Hwang Tai-Sik;Seok Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.527-533
    • /
    • 2005
  • The linear hybrid stepping motors (LHSM) has been widely used due to its simple structure and low cost control. Despite of its attractive features, the conventional LHSM has the multiples of 4th times harmonic reluctance force from excitation current and cogging force from space harmonic of permeance. This paper propose a new LHSM, which the mechanical and electrical phase difference are $45^{\circ}$. The proposed motor shows a unique ability to deliver low detent force and we propose a closed-loop control scheme to attack the ripple force for high performance applications. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed modeling and control scheme.

Manufacturing Prototype and Characteristics Analysis of HB Type Linear Stepping Motor with Longitudinal Flux Machine (자속종방향 HB형 선형 스텝핑 전동기의 시작기 제작 및 특성해석)

  • 원규식;김동희;이상호;오홍석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.507-513
    • /
    • 2003
  • Nowadays, the necessity of linear position control motors have been increased in the various fields of the automatic control system. In the recently, the position control motor have disadvantaged in the efficiency and economical view since it require a conversion equipments such as belt and gear in order to convert rotary to linear motion. On the contrary, the hybrid linear stepping motor(HLSM) of linear motion digital actuator has a direct drive method that do not need mechanical conversion equipments. Therefore, the HLSM is better advantaged in the efficiency and economical view than a rotary stepping motor. In this paper, we have designed an optimum tooth shape and a permanent magnet value between the mover teeth by the 2D finite element method(FEM) to develop the HLSM with longitudinal flux machine(LFM) type, and calculated the thrust force and normal force. And we have manufactured the prototype of it. and have experimented the thrust force and the dynamic thrust characteristics of it.

Calculation of Iron Losses in Inverter-fed Induction Motors based on Time-stepping FEM

  • Wang, Hai-Rong;Wu, Jian-Hua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.283-287
    • /
    • 2013
  • This paper presents a method for calculating iron losses in three-phase induction motors under the inverter supply through the field-circuit coupled time-stepping finite element method (FEM). Iron losses are calculated by using the three-term iron losses separated model and modifying the loss coefficients obtained by the iron losses curves which are provided by the manufacturer under the sinusoidal supply. Simulation results by the presented method are verified by the measured results with an error lower than 5%, confirming the validity of the proposed method. Finally, iron losses distribution of the inverter-fed three-phase induction prototype motor is shown.

Analysis of Current Waveforms in Variable-reluctance Stepping Motors (가변릴럭턴스 스텝핑모터의 전류파형 해석)

  • Kwon, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.116-118
    • /
    • 1995
  • A comprehensive analytical study of total-intake current waveforms is described. In particular, the characteristics of the modulation envelope of the waveforms are the subject of detailed investigation. It is shown that the lower modulation envelope of the total intake current is capable of providing a signal suitable for use in stabilising a variable-reluctance stepping motor.

  • PDF