• Title/Summary/Keyword: Stepped MMI Couplers

Search Result 3, Processing Time 0.021 seconds

Novel Design Concept for Compact MMI Couplers (소형 다중모드 간섭 결합기의 새로운 설계 개념)

  • Ho, Kwang-Chun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.305-306
    • /
    • 2009
  • This paper shows through detailed simulations that the length of conventionally designed multimode-interference couplers can be shorted significantly by stepped-width and stepped-index design. For the cross-coupling device, this stepped-design results in 9% or more length reduction.

  • PDF

Device Miniaturization Using Stepped Multimode-Interference Couplers (계단형 다중모드 간섭 결합기를 사용한 소자의 소형화)

  • Ho, Kwang-Chun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, a novel architecture for device miniaturization of multimode interference-based couplers (MMICs) is proposed by replacing conventionally designed MMICs by cascaded two-section stepped-width or stepped-index MMICs. For the 82% cross coupling efficiency in a stepped-width MMIC, the coupling length of device results in just 6.7% length reduction. However, for a stepped-width and stepped-index MMIC, the coupling efficiency increases to 93% and the length reduction of 9% occurs. Furthermore, with additional incorporation of tapered devices, it shows that a compact MMIC can be designed in which the coupling efficiency is 90% and the length is reduced to 25%.

Modal Characteristics of Plasmonic Multimode Interference Couplers with Stepped Structure (플라즈마 계단형 다중모드 간섭 결합기의 모드 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.47-52
    • /
    • 2013
  • A novel architecture to reduce dramatically the coupling length of multimode interference-based couplers (MMICs) is proposed by replacing conventionally designed MMICs by cascaded two-section plasmonic stepped MMICs (PS-MMIC). For the 60% cross power splitting ratio in a stepped-width MMIC, the coupling length of device results in around 42% length reduction. Furthermore, the power splitting ratio and coupling length of plasmonic MMIC just vary around 1~2% along the variation of refractive index. On the contrast, those factors for the variation of MMIC's width strongly vary around 30~40%.