• Title/Summary/Keyword: Step-up DC-DC Converter

Search Result 171, Processing Time 0.02 seconds

Three-Phase ZVS DC-DC Converter with Low Transformer Turn Ratio for High Step-up and High Power Applications (낮은 변압기 턴비를 갖는 고승압.대전력용 3상 ZVS DC-DC컨버터)

  • Kim, Joon-Geun;Park, Chan-Soo;Choi, Se-Wan;Park, Ga-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.242-249
    • /
    • 2011
  • The proposed converter has easy device selection for high step-up and high power applications since boost half bridge and voltage doubler cells are connected, respectively, in parallel and series in order to increase output power and voltage. Especially, optimized design of high frequency transformers is possible owing to reduced turn ratio and eliminated dc offset, and distributed power through three cores is beneficial to low profile and thermal distribution. The proposed converter does not necessitate start-up circuit and additional clamp circuit due to the use of whole duty range between 0 and 1 and is suitable for applications with wide input voltage range. Also, high efficiency can be achieved since ZVS turn on of switches are achieved in wide duty cycle range and ZCS turn on and off of diodes are achieved. The proposed converter was validated through 5 kW prototype.

High Step-Up Bidirectional DC-DC Converter for Battery Storage System (배터리 저장 시스템용 고승압 양방향 컨버터)

  • Zhang, Hai-Long;Park, Sung-Jun;Kim, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.320-321
    • /
    • 2018
  • A non-isolated high voltage gain bidirectional DC-DC converter for battery storage system has been presented in this paper. The topology is composed of boost converter and traditional SEPIC converter. The proposed converter can achieve higher voltage conversion ratio with reduced voltage and current stresses in the switches. In additional, a reduced number of components are included in this topology. The PSIM simulation is carried to validate the analysis and operation of the converter.

  • PDF

Modular Line-connected Photovoltaic PCS (모듈형 계통연계 태양광 PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • In this paper, the modular line-connected photovoltaic PCS (photovoltaic power conditioning system) is proposed. A step-up DC-DC converter using a active-clamp circuit and a dual series-resonant rectifier is proposed to achieve a high efficiency and a high input-output voltage ratio efficiently. An IncCond (incremental conductance) MPPT (maximum power point tracking) algorithm that improves MPPT characteristic is used. The PV module current is estimated without using a DC current sensor. By control a inverter using a linearized output current controller, a unity power factor is achieved. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed DC-DC converter and controllers is proved by experiments.

Design of an Input-Parallel Output-Parallel Multi-Module DC-DC Converter Using a Ring Communication Structure

  • Hu, Tao;Khan, Muhammad Mansoor;Xu, Kai;Zhou, Lixin;Rana, Ahmad
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.886-898
    • /
    • 2015
  • The design feasibility of a micro unidirectional DC transmission system based on an input-parallel output-parallel (IPOP) converter is analyzed in this paper. The system consists of two subsystems: an input-parallel output-series (IPOS) subsystem to step up the DC link voltage, and an input-series output-parallel (ISOP) subsystem to step down the output voltage. The two systems are connected through a transmission line. The challenge of the delay caused by the communication in the control system is addressed by introducing a ring communication structure, and its influence on the control system is analyzed to ensure the feasibility and required performance of the converter system under practical circumstances. Simulation and experiment results are presented to verify the effectiveness of the proposed design.

A New Multi Level High Gain Boost DC-DC Converter with Wide Input Voltage Range and Reduced Stress Voltage Capability (넓은 입력 전압 범위와 감소된 스트레스 전압 기능성을 갖는 새로운 승압형 멀티레벨 DC-DC 컨버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • The use of high-gain-voltage step-up converters for distributed power generation systems is being popularized because of the need for new energy generation and power conversion technologies. In this study, a new constructed high-gain-boost DC-DC converter was proposed to coordinate low voltage output DC sources, such as PV or fuel cell systems, with high DC bus (380 V) lines. Compared with traditional boost DC-DC converters, the proposed converter can create higher gain and has wider input voltage range and lower voltage stress for power semiconductors and passive elements. Moreover, the proposed topology produces multilevel DC voltage output, which is the main advantage of the proposed topology. Steady-state analysis in continuous conduction mode of the proposed converter is discussed in detail. The practicability of the proposed DC-DC converter is presented by experimental results with a 300 W prototype converter.

A Novel Non-Isolated DC-DC Converter using Single Switch and Voltage Multipliers with High Step-Up Voltage Gain and Low Voltage Stress Characteristics (고전압비와 낮은 전압 스트레스를 가진 단일 스위치와 전압 체배 회로를 이용한 새로운 비절연형 DC-DC 컨버터)

  • Tuan, Tran Manh;Amin, Saghir;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.157-161
    • /
    • 2020
  • High voltage gain converters are essential for distributed power generation systems with renewable energy sources, such as fuel cells and solar cells, because of their low voltage characteristics. This paper introduces a novel nonisolated DC-DC converter topology developed by combining an inverting buck-boost converter and voltage multipliers. In the proposed converter, the input voltage is connected in series with the output, and the majority of the input power is directly delivered to the load. The voltage multipliers are stacked in series to achieve high step-up voltage gain. The voltage stress across all of the switches and capacitors can be significantly reduced. As a result, the switches with low voltage ratings can be used to achieve high efficiency and low cost. To verify the validity of the proposed topology, a 360-W prototype converter is built to obtain the experimental results.

Isolated Step-up DC/DC Converter applied Soft-switching Method (소프트스위칭 방식을 적용한 절연형 승압용 DC/DC 컨버터)

  • Kim, Young-Ju;Hwang, Jung-Goo;Kim, Sun-Pil;Park, Sung-Jun;Song, Sung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.87-94
    • /
    • 2015
  • Recently, renewable energy sources are under the spotlight. due to the depletion of fossil fuels and environmental problem for the carbon dioxide. Among them, research on the Photovoltaic System using solar energy systems has been actively conducted. In this paper, we propose boosting the insulated DC/DC converter topologies Applied to soft-switching methods used in photovoltaic PCS. The proposed topology is of a type that combines a series of full-bridge converter and a boost converter, a full bridge converter and applying the insulation and soft switching system, the output voltage boost stage is carried out for the boost control. The proposed circuit validity was verified through the PSIM simulation and 5kW PV PCS Prototype and experiments.

DC-to-DC Converter used both as Step-up and Step-down (승·강압 겸용 DC-to-DC 컨버터)

  • Lee, Gi Yung;Kang, Feel-soon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.23-24
    • /
    • 2015
  • 본 논문에서는 하나의 입력으로 강압과 승압된 두 개의 출력을 가지는 승 강압 겸용 DC-to-DC 컨버터를 제안한다. 승압 출력이 가능한 컨버터는 기존의 부스트 컨버터와 동일한 구조이고, 강압 출력이 가능한 컨버터는 배터리의 직 병렬 가변 결합을 이용한다. 강압출력이 가능한 컨버터 동작에서 배터리는 강압 출력의 입력원이 되어 기존의 벅컨버터보다 2배 이상 강압 가능한 장점이 있다. 본 논문은 제안하는 승 강압 겸용 DC-to-DC 컨버터의 구조 및 동작 모드에 따른 이론적 분석을 시행하고 컴퓨터 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

Trend of low voltage and high current Technology for DC-DC Converters (저전압대전류(低電壓大電流) DC-DC 컨버터 기술동향(技術動向))

  • Suzuki, Shotaro
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.3-11
    • /
    • 2002
  • This paper presents the trend of low voltage and high current technology for DC-DC converters. It can be said that the output voltage of the on-board power supply has been rapidly moving forward a low voltage in proportion to the minuteness of the semiconductors. As for as its speed is concerned, the change of the market situation seems to be faster than that of R&D for the low voltage and high current products put out by power supply manufacturers. Here, the present situation and the trend of non-isolated type step-down DC-DC converter and isolated type DC-DC converter called "Brick" will be taken up mainly from the fellowing point of view. -low voltage and high current keeping up with the current demand for the latest telecommunication networks and broadband. -build-up of the total solution for dispersion system power supply. In this paper, an explanation is given to mainly concerning to the newest products in the supplier's position.

  • PDF

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.