• Title/Summary/Keyword: Step-Up-Transformer

Search Result 127, Processing Time 0.023 seconds

Electrical Properties of Rosen Type piezoelectric transformers using Low Temperature Sintering PMN-PNN-PZT ceramics (저온소결 PMN-PNN-PZT계 세라믹스를 이용한 Rosen형 압전변압기의 전기적 특성)

  • Lee, Sang-Ho;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.53-53
    • /
    • 2008
  • Piezoelectric transformers have been widely used such as DC-DC convertor, invertor, Ballast, etc. Because, the y have some merits compared with electro-magnetic transformers such as step-up ratio, high efficiency, small size and lg hit weight, etc. Piezoelectric transformer require high electromechanical coupling factor kp in order to induce a large out put power in proportional to applied electric field. And also, high mechanical quality factor Qm is required to prevent mechanical loss and heat generation. In general, PZT system ceramics should be sintered at high temperatures between 1200 and $1300^{\circ}C$ in order to obtain complete densification. Accordingly, environmental pollution due to its PbO evaporation. Hence, to reduce its sintering temperature, various kinds of material processing methods such as hot pressing, high energy mill, liquid phase sintering, and using ultra fine powder have been performed. Among these methods, liquid phase sintering is basically an effective method for aiding densification at low temperature. In this study, In order to comparis on low temperature sintering and solid state sintering piezoelectric transformers, rosen type transformers were fabricated u sing two PZT ceramics compositions and their electrical properties were investigated.

  • PDF

Development of a 3.6 MW, $4\;{\mu}s$, 200 pps Pulse Modulator for a High Power Magnetron (고출력 마그네트론 구동용 3.6 MW, $4\;{\mu}s$, 200 pps 펄스 모듈레이터 개발)

  • Jang Sung-Duck;Kwon Sei-Jin;Bae Young-Soon;Oh Jong-Seok;Cho Moo-Hyun;Namkung Won;Son Yoon-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • The Korean Superconducting Tokamak Advanced Research (KSTAR) tokamak device is being constructed to perform long-pulse, high-beta, advanced tokamak fusion physics experiments. The long-pulse operation requires the non-inductive current drive system such as the Lower-Hybrid Current Drive (LHCD) system. The LHCD system drives the non-inductive plasma current by means of C-band RF with 2-MW CW power and 5-GHz frequency. For the LHCD test experiments, an RF test system is developed. It is composed of a 5-GHz, 1.5-MW pulsed magnetron and a compact pulse modulator with $4\;{\mu}s$ of pulse width. The pulse modulator provides the maximum output voltage of 45 kV and the maximum current of 90 A. It is composed of 7 stages of Pulse Forming Network (PFN), a thyratron tube (E2V, CX1191D), and a pulse transformer with 1:4 step-up ratio. In this paper, the detailed design and the performance test of the pulse modulator are presented.

Novel Switching Strategy of 1MVar STATCON using Cascade Multilevel Voltage Source Inverter for FACTS Application (FACTS 적용을 위한 직렬형 멀티레벨 전압형 인버터를 사용한 1MVar STATCON의 새로운 스위칭기법)

  • Min, Wan-Gi;Min, Jun-Gi;Choe, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.691-700
    • /
    • 1999
  • This paper proposes a novel switching strategy of 1Mvar STATCON using cascade multilevel H-bridge inverter(HBI) for FACTS application. To control the reactive power instantaneously, the d-q dynamic system model is described and analyzed. A single pulse pattern based on the SHEM(Selective Harmonic Elimination Method) technique is determined from the look-up table to reduce the line current harmonics and a rotating fundamental frequency switching scheme is presented to adjust the DC voltage of each inverter capacitor at the same value. So the voltage unbalance problem between separately DC bus voltage is improved by using the proposed switching scheme. As a result, the presented inverter configuration not only reduces the system complexity by eliminating the isolation at the AC input side transformer but also improves the dynamic response to the step change of reactive power.

  • PDF

Design and Implementation of a Trigger Circuit for Xenon Flash Lamp Driver (제논 플래시 램프 구동장치를 위한 트리거 회로 설계 및 구현)

  • Song, Seung-Ho;Cho, Chan-Gi;Park, Su-Mi;Park, Hyun-Il;Bae, Jung-Su;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.138-139
    • /
    • 2017
  • This paper describes the design and implementation of a trigger circuit which can be series connected with main pulse circuit for a xenon flash lamp driver. For generating high voltage, the trigger circuit is designed as an inductive energy storage pulsed power modulator with 2 state step-up circuit consisting of a boost converter and a flyback circuit. In order to guarantee pulse width, a resonant capacitor on the output side of the flyback circuit is designed. This capacitor limits the output voltage to protect the flyback switch. In addition, to protect another power supply of xenon flash lamp driver from trigger pulse, the high voltage transformer which can carry the full current of main pulse is designed. To verify the proposed design, the trigger circuit is developed with the specification of maximum 23 kV, 0.6 J/pulse output and tested with a xenon flash lamp driver consisting of a main pulse circuit and a simmer circuit.

  • PDF

A Study on the Output Voltage Characteristic of Switched Trans Z-Source Inverter (스위치드 변압기 Z-소스 인버터의 출력전압 특성에 관한 연구)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • This paper proposes the switched trans Z-source inverter(STZSI) which combined the characteristics of the trans Z-source inverter(TZSI) and the switched inductor Z-source inverter(SLZSI). The proposed STZSI has the same performance compared with the SLZSI which is improved the voltage boost performance of the conventional typical X-shaped ZSI, and it has advantage that circuit structure of Z-impedance network is more simple. And, in order to step up the voltage boost factor under the condition of the same duty ratio, unlike the SLZSI adding the inductors and diodes, the proposed method is dune by changing the turn ratio of trans primary winding of Z-impedance network. To confirm the validity of the proposed method, PSIM simulation and a DSP(TMS320F28335) based experiment were performed using trans with turn ratio 1 and 2 under the condition of the input DC voltage VI=50V, duty ratio D=0.1 and D=0.15. As a result, under the same input/ouput condition, the inverter arm voltage stress of the proposed method is reduced to about 15%-22% as compared with typical X-shaped ZSI, and the elements in Z-impedance network of the proposed method is reduced as compared with the SLZSI.

Design of a High Power Three-Phase ZVS Push-Pull Converter (대전력 3상 ZVS 푸쉬풀 컨버터 설계)

  • Park, Jun-Sung;Lee, Sang-Won;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.209-218
    • /
    • 2011
  • In low voltage high current applications such as fuel cells the current-fed DC-DC converter which has small ripple current and turn ratio is more efficient. In the applications larger than 5kW the conventional single-phase current-fed converter based on full-bridge, half-bridge or push-pull topologies has high current burden of devices such as switches, and the selection and optimized design of the devices are not easy. In this paper a three-phase active-clamped current-fed push-pull DC-DC converter suitable for high power high step-up applications is proposed. The proposed converter has reduced current burden and is suitable for wide input voltage applications due to the use of whole duty cycle range. Design methods of main components including three-phase high frequency transformers are provided, and the validity and performance of the proposed converter are proved from a 5kW prototype.

A Study On High Power Factor Sine Pulse Type Power Supply For Atmospheric Pressure Plasma Cleaning System with 3-Phase PFC Boost Converter (3상 PFC 부스트 컨버터를 채용한 상압플라즈마 세정기용 고역률 정형파 펄스 출력형 전원장치에 관한 연구)

  • Han, Hee-Min;Kim, Min-Young;Seo, Kwang-Duk;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents quasi-resonant type high power factor ac power supply for atmospheric pressure plasma cleaning system adopting three phase PFC boost converter and it's control method. The presented ac power supply consists of single phase H-bridge inverter, step-up transformer for generating high voltage and three phase PFC boost converter for high power factor on source utility. Unlikely to the traditional LC resonant converter, the propose one has an inductor inside only. A single resonant takes place through the inside inductor and the capacitor from the plasma load modeled into two series capacitor and one resistance. The quasi-resonant can be achieved by cutting the switching signal when the load current decrease to zero. To obtain power control ability, the propose converter controlled by two control schemes. One is the changing output pulse period scheme in the manner of PFM(Pulse Frequency Modulation) control. On the other, to provide more higher power to load, the DC rail voltage is directly controlled by the 3-phase PFC boost converter. The significant merits of the proposed converter are the uniform power providing capability for high quality plasma generation and low reactive power in AC and DC side. The proposed work is verified through digital simulation and experimental implementation.