A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)
-
- Proceedings of the Korean Institute of Navigation and Port Research Conference
- /
- 2004.04a
- /
- pp.5-9
- /
- 2004
In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30
To identify the detailed attenuation structure in the southern Korean Peninsula, a numerical test was conducted for the Q tomography inversion to be applied to the accumulated dataset until 2005. In particular, the stochastic pointsource ground-motion model (STGM model; Boore, 2003) was adopted for the 2D Q tomography inversion for direct application to simulating the strong ground-motion. Simultaneous inversion of the STGM model parameters with a regional single Q model was performed to evaluate the source and site effects which were necessary to generate an artificial dataset for the numerical test. The artificial dataset consists of simulated Fourier spectra that resemble the real data in the magnitude-distance-frequency-error distribution except replacement of the regional single Q model with a checkerboard type of high and low values of laterally varying Q models. The total number of Q blocks used for the checkerboard test was 75 (grid size of
We have investigated the infrared spectra for CO adsorbed on silica supported nickel(Ni-Si
Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf
This study was conducted to survey the hygienic status of chicken meats on the microbial levels, which were collected from poultry processing plants located in the local provinces in nationwide including the JeJu island (n=15) in 1997. In particular, Salmonella spp., Campylobacter jejuni, and Listeria monocytogenes, which were retarded as one of the most important entero-pathogens relating to food home illness from poultry, were investigated on their isolation frequency including the other pathogens related on the food-borne illness. A total of 115 processed chickens were submitted on the present study. In general, the bacterial contamination frequency showed more or less lower
The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.
Estimation of food consumption details, such as portion size and frequency of consumption, is needed for exposure assessment step in microbiological risk assessment. This study investigated the amounts and frequencies of 50 kinds of consumed livestock products. A quantitative survey was performed by trained interviewers in face-to-face interviews with 1,500 adults aged over 19, who were randomly selected from seven major provinces in Korea. Respondents received a picture of one serving size for each of the 50 livestock products, including meats, processed meat products, milk and dairy products, and eggs and processed egg products. A t-test and general linear model were carried out using SPSS statistics. The most important factor affecting consumption of livestock products was residence area. The most frequently consumed food was milk (2.6 times/week), followed by pork (1.4 times/week), liquid yogurt (1.3 times/week), rolled omelet (1.2 times/week), semisolid yogurt (1.0 times/week), steamed egg (1.0 times/week), ice cream (0.9 times/week), chicken (0.8 times/week), low fat milk (0.7 times/week), and beef (0.6 times/week). In the case of consumption amount, people living in a city consumed meat (beef, pork, chicken, and duck) 1.5 times more than those living in a village, whereas milk and dairy products and eggs and processed egg products were consumed more frequently by people living in a town. When people eat meat, they consume twice the amount of one serving size. Students consumed livestock and processed livestock products more frequently with greater portions all at once. People living in Seoul, Incheon/Gyeonggi, and Busan/Ulsan/Gyeongnam consumed livestock products more frequently in large amounts. Data from this study can be used for risk assessment of livestock and processed livestock products as well as education for safe consumption of livestock products.
1. Introduction Today Internet is recognized as an important way for the transaction of products and services. According to the data surveyed by the National Statistical Office, the on-line transaction in 2007 for a year, 15.7656 trillion, shows a 17.1%(2.3060 trillion won) increase over last year, of these, the amount of B2C has been increased 12.0%(10.2258 trillion won). Like this, because the entry barrier of on-line market of Korea is low, many retailers could easily enter into the market. So the bigger its scale is, but on the other hand, the tougher its competition is. Particularly due to the Internet and innovation of IT, the existing market has been changed into the perfect competitive market(Srinivasan, Rolph & Kishore, 2002). In the early years of on-line business, they think that the main reason for success is a moderate price, they are awakened to its importance of on-line service quality with tough competition. If it's not sure whether customers can be provided with what they want, they can use the Web sites, perhaps they can trust their products that had been already bought or not, they have a doubt its viability(Parasuraman, Zeithaml & Malhotra, 2005). Customers can directly reserve and issue their air tickets irrespective of place and time at the Web sites of travel agencies or airlines, but its empirical studies about these Web sites for reserving and issuing air tickets are insufficient. Therefore this study goes on for following specific objects. First object is to measure service quality and service recovery of Web sites for reserving and issuing air tickets. Second is to look into whether above on-line service quality and on-line service recovery have an impact on overall service quality. Third is to seek for the relation with overall service quality and customer satisfaction, then this customer satisfaction and loyalty intention. 2. Theoretical Background 2.1 On-line Service Quality Barnes & Vidgen(2000; 2001a; 2001b; 2002) had invented the tool to measure Web sites' quality four times(called WebQual). The WebQual 1.0, Step one invented a measuring item for information quality based on QFD, and this had been verified by students of UK business school. The Web Qual 2.0, Step two invented for interaction quality, and had been judged by customers of on-line bookshop. The WebQual 3.0, Step three invented by consolidating the WebQual 1.0 for information quality and the WebQual2.0 for interactionquality. It includes 3-quality-dimension, information quality, interaction quality, site design, and had been assessed and confirmed by auction sites(e-bay, Amazon, QXL). Furtheron, through the former empirical studies, the authors changed sites quality into usability by judging that usability is a concept how customers interact with or perceive Web sites and It is used widely for accessing Web sites. By this process, WebQual 4.0 was invented, and is consist of 3-quality-dimension; information quality, interaction quality, usability, 22 items. However, because WebQual 4.0 is focusing on technical part, it's usable at the Website's design part, on the other hand, it's not usable at the Web site's pleasant experience part. Parasuraman, Zeithaml & Malhorta(2002; 2005) had invented the measure for measuring on-line service quality in 2002 and 2005. The study in 2002 divided on-line service quality into 5 dimensions. But these were not well-organized, so there needed to be studied again totally. So Parasuraman, Zeithaml & Malhorta(2005) re-worked out the study about on-line service quality measure base on 2002's study and invented E-S-QUAL. After they invented preliminary measure for on-line service quality, they made up a question for customers who had purchased at amazon.com and walmart.com and reassessed this measure. And they perfected an invention of E-S-QUAL consists of 4 dimensions, 22 items of efficiency, system availability, fulfillment, privacy. Efficiency measures assess to sites and usability and others, system availability measures accurate technical function of sites and others, fulfillment measures promptness of delivering products and sufficient goods and others and privacy measures the degree of protection of data about their customers and so on. 2.2 Service Recovery Service industries tend to minimize the losses by coping with service failure promptly. This responses of service providers to service failure mean service recovery(Kelly & Davis, 1994). Bitner(1990) went on his study from customers' view about service providers' behavior for customers to recognize their satisfaction/dissatisfaction at service point. According to them, to manage service failure successfully, exact recognition of service problem, an apology, sufficient description about service failure and some tangible compensation are important. Parasuraman, Zeithaml & Malhorta(2005) approached the service recovery from how to measure, rather than how to manage, and moved to on-line market not to off-line, then invented E-RecS-QUAL which is a measuring tool about on-line service recovery. 2.3 Customer Satisfaction The definition of customer satisfaction can be divided into two points of view. First, they approached customer satisfaction from outcome of comsumer. Howard & Sheth(1969) defined satisfaction as 'a cognitive condition feeling being rewarded properly or improperly for their sacrifice.' and Westbrook & Reilly(1983) also defined customer satisfaction/dissatisfaction as 'a psychological reaction to the behavior pattern of shopping and purchasing, the display condition of retail store, outcome of purchased goods and service as well as whole market.' Second, they approached customer satisfaction from process. Engel & Blackwell(1982) defined satisfaction as 'an assessment of a consistency in chosen alternative proposal and their belief they had with them.' Tse & Wilton(1988) defined customer satisfaction as 'a customers' reaction to discordance between advance expectation and ex post facto outcome.' That is, this point of view that customer satisfaction is process is the important factor that comparing and assessing process what they expect and outcome of consumer. Unlike outcome-oriented approach, process-oriented approach has many advantages. As process-oriented approach deals with customers' whole expenditure experience, it checks up main process by measuring one by one each factor which is essential role at each step. And this approach enables us to check perceptual/psychological process formed customer satisfaction. Because of these advantages, now many studies are adopting this process-oriented approach(Yi, 1995). 2.4 Loyalty Intention Loyalty has been studied by dividing into behavioral approaches, attitudinal approaches and complex approaches(Dekimpe et al., 1997). In the early years of study, they defined loyalty focusing on behavioral concept, behavioral approaches regard customer loyalty as "a tendency to purchase periodically within a certain period of time at specific retail store." But the loyalty of behavioral approaches focuses on only outcome of customer behavior, so there are someone to point the limits that customers' decision-making situation or process were neglected(Enis & Paul, 1970; Raj, 1982; Lee, 2002). So the attitudinal approaches were suggested. The attitudinal approaches consider loyalty contains all the cognitive, emotional, voluntary factors(Oliver, 1997), define the customer loyalty as "friendly behaviors for specific retail stores." However these attitudinal approaches can explain that how the customer loyalty form and change, but cannot say positively whether it is moved to real purchasing in the future or not. This is a kind of shortcoming(Oh, 1995). 3. Research Design 3.1 Research Model Based on the objects of this study, the research model derived is
Recommender systems based on association rule mining significantly contribute to seller's sales by reducing consumers' time to search for products that they want. Recommendations based on the frequency of transactions such as orders can effectively screen out the products that are statistically marketable among multiple products. A product with a high possibility of sales, however, can be omitted from the recommendation if it records insufficient number of transactions at the beginning of the sale. Products missing from the associated recommendations may lose the chance of exposure to consumers, which leads to a decline in the number of transactions. In turn, diminished transactions may create a vicious circle of lost opportunity to be recommended. Thus, initial sales are likely to remain stagnant for a certain period of time. Products that are susceptible to fashion or seasonality, such as clothing, may be greatly affected. This study was aimed at expanding association rules to include into the list of recommendations those products whose initial trading frequency of transactions is low despite the possibility of high sales. The particular purpose is to predict the strength of the direct connection of two unconnected items through the properties of the paths located between them. An association between two items revealed in transactions can be interpreted as the interaction between them, which can be expressed as a link in a social network whose nodes are items. The first step calculates the centralities of the nodes in the middle of the paths that indirectly connect the two nodes without direct connection. The next step identifies the number of the paths and the shortest among them. These extracts are used as independent variables in the regression analysis to predict future connection strength between the nodes. The strength of the connection between the two nodes of the model, which is defined by the number of nodes between the two nodes, is measured after a certain period of time. The regression analysis results confirm that the number of paths between the two products, the distance of the shortest path, and the number of neighboring items connected to the products are significantly related to their potential strength. This study used actual order transaction data collected for three months from February to April in 2016 from an online commerce company. To reduce the complexity of analytics as the scale of the network grows, the analysis was performed only on miscellaneous goods. Two consecutively purchased items were chosen from each customer's transactions to obtain a pair of antecedent and consequent, which secures a link needed for constituting a social network. The direction of the link was determined in the order in which the goods were purchased. Except for the last ten days of the data collection period, the social network of associated items was built for the extraction of independent variables. The model predicts the number of links to be connected in the next ten days from the explanatory variables. Of the 5,711 previously unconnected links, 611 were newly connected for the last ten days. Through experiments, the proposed model demonstrated excellent predictions. Of the 571 links that the proposed model predicts, 269 were confirmed to have been connected. This is 4.4 times more than the average of 61, which can be found without any prediction model. This study is expected to be useful regarding industries whose new products launch quickly with short life cycles, since their exposure time is critical. Also, it can be used to detect diseases that are rarely found in the early stages of medical treatment because of the low incidence of outbreaks. Since the complexity of the social networking analysis is sensitive to the number of nodes and links that make up the network, this study was conducted in a particular category of miscellaneous goods. Future research should consider that this condition may limit the opportunity to detect unexpected associations between products belonging to different categories of classification.
Recently, sentiment analysis using open Internet data is actively performed for various purposes. As online Internet communication channels become popular, companies try to capture public sentiment of them from online open information sources. This research is conducted for the purpose of analyzing pulbic sentiment of Korean Top-10 companies using a multi-categorical sentiment lexicon. Whereas existing researches related to public sentiment measurement based on big data approach classify sentiment into dimensions, this research classifies public sentiment into multiple categories. Dimensional sentiment structure has been commonly applied in sentiment analysis of various applications, because it is academically proven, and has a clear advantage of capturing degree of sentiment and interrelation of each dimension. However, the dimensional structure is not effective when measuring public sentiment because human sentiment is too complex to be divided into few dimensions. In addition, special training is needed for ordinary people to express their feeling into dimensional structure. People do not divide their sentiment into dimensions, nor do they need psychological training when they feel. People would not express their feeling in the way of dimensional structure like positive/negative or active/passive; rather they express theirs in the way of categorical sentiment like sadness, rage, happiness and so on. That is, categorial approach of sentiment analysis is more natural than dimensional approach. Accordingly, this research suggests multi-categorical sentiment structure as an alternative way to measure social sentiment from the point of the public. Multi-categorical sentiment structure classifies sentiments following the way that ordinary people do although there are possibility to contain some subjectiveness. In this research, nine categories: 'Sadness', 'Anger', 'Happiness', 'Disgust', 'Surprise', 'Fear', 'Interest', 'Boredom' and 'Pain' are used as multi-categorical sentiment structure. To capture public sentiment of Korean Top-10 companies, Internet news data of the companies are collected over the past 25 months from a representative Korean portal site. Based on the sentiment words extracted from previous researches, we have created a sentiment lexicon, and analyzed the frequency of the words coming up within the news data. The frequency of each sentiment category was calculated as a ratio out of the total sentiment words to make ranks of distributions. Sentiment comparison among top-4 companies, which are 'Samsung', 'Hyundai', 'SK', and 'LG', were separately visualized. As a next step, the research tested hypothesis to prove the usefulness of the multi-categorical sentiment lexicon. It tested how effective categorial sentiment can be used as relative comparison index in cross sectional and time series analysis. To test the effectiveness of the sentiment lexicon as cross sectional comparison index, pair-wise t-test and Duncan test were conducted. Two pairs of companies, 'Samsung' and 'Hanjin', 'SK' and 'Hanjin' were chosen to compare whether each categorical sentiment is significantly different in pair-wise t-test. Since category 'Sadness' has the largest vocabularies, it is chosen to figure out whether the subgroups of the companies are significantly different in Duncan test. It is proved that five sentiment categories of Samsung and Hanjin and four sentiment categories of SK and Hanjin are different significantly. In category 'Sadness', it has been figured out that there were six subgroups that are significantly different. To test the effectiveness of the sentiment lexicon as time series comparison index, 'nut rage' incident of Hanjin is selected as an example case. Term frequency of sentiment words of the month when the incident happened and term frequency of the one month before the event are compared. Sentiment categories was redivided into positive/negative sentiment, and it is tried to figure out whether the event actually has some negative impact on public sentiment of the company. The difference in each category was visualized, moreover the variation of word list of sentiment 'Rage' was shown to be more concrete. As a result, there was huge before-and-after difference of sentiment that ordinary people feel to the company. Both hypotheses have turned out to be statistically significant, and therefore sentiment analysis in business area using multi-categorical sentiment lexicons has persuasive power. This research implies that categorical sentiment analysis can be used as an alternative method to supplement dimensional sentiment analysis when figuring out public sentiment in business environment.
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient
Extension Method of Association Rules Using Social Network Analysis
(사회연결망 분석을 활용한 연관규칙 확장기법)
Public Sentiment Analysis of Korean Top-10 Companies: Big Data Approach Using Multi-categorical Sentiment Lexicon
(국내 주요 10대 기업에 대한 국민 감성 분석: 다범주 감성사전을 활용한 빅 데이터 접근법)
이메일무단수집거부
이용약관
제 1 장 총칙
제 2 장 이용계약의 체결
제 3 장 계약 당사자의 의무
제 4 장 서비스의 이용
제 5 장 계약 해지 및 이용 제한
제 6 장 손해배상 및 기타사항
Detail Search
Image Search
(β)