• 제목/요약/키워드: Step speed control

검색결과 397건 처리시간 0.036초

산업기기 엔진속도제어용 HB형 스텝모터 개발 (DEVELOPEMENT OF HB TYPE STEP MOTOR FOR ENGINE SPEED CONTROL USAGE OF INDUSTRIAL MACHINES)

  • 이종인;이정일;배동진;박현준;김종구;최상덕;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.229-231
    • /
    • 1994
  • In recent years, as the industry has been highly developed and precised, its driving and control system have been changed, what is more, revolutionized. The requirements of these change are more accuracy, more high efficiency, more miniaturized size and more servo functions. Step motor has been adopted for driving servo systems, because of easier controllability, open-loop control, high position accuracy at low speed. In this paper, we deal with developing step motor system, and describe the procedure that contains design, analysis. testing characteristics.

  • PDF

영구자석형 동기전동기 구동용 인버터의 통전각에 따른 운전 방식의 비교 분석 (Comparative Analysis of Driving Methods According to Electrical Conduction Angle of Inverter for PMSM)

  • 이승용;윤덕용
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.72-81
    • /
    • 2018
  • 본 논문에서는 영구자석형 동기전동기를 구동하는 인버터에서 사용할 수 있는 정현파 전류 운전 방식과 120도 운전 방식 및 150도 운전 방식에 대하여 각각 시뮬레이션을 수행하고 이것들의 운전 특성을 비교 분석한다. 이 운전 방식들은 통전각과 전동기의 상전류에 형태로 구분이 된다. 종래에는 인버터의 효율 향상을 위하여 정현파 전류 운전 방식과 120도 운전 방식 간의 전환 방법에 중점을 둔 연구가 많았으나, 본 논문에서는 이들 각각의 운전 방식에 대한 운전 특성을 비교 분석하여 그것들의 장점을 다양한 전환 방법으로 응용할 수 있도록 하는데 중점을 둔다. 이를 위하여 각각의 운전 방식에 대하여 전동기의 발생 토크, 속도 응답 특성, 상전류 THD에 대하여 시뮬레이션을 수행하였다. 그 결과로 정현파 전류 운전 방식이 3가지 운전 방식들 중에서 전체적으로 가장 좋은 성능을 보였고, 120도 운전 방식은 150도 운전 방식에 비하여 속도 응답 특성이 다소 우수하였으며, 150도 운전 방식은 120도 운전 방식에 비하여 상전류 THD가 낮은 것을 확인하였다.

PM 스텝 모우터의 동특성 개선 및 안정화에 관한 연구 (A Study on Improvement of Dynamic Characteristics and Stability of PM Stepping Motor)

  • Kim, Do-Hyung
    • 대한전자공학회논문지
    • /
    • 제23권6호
    • /
    • pp.888-894
    • /
    • 1986
  • In this paper, a phase locked loop control system is designed to have high performance and stability in a 2-phase bifilar winding PM step motor. The BODE diagram analysis method is used to improve the stability and dynamic characteristic of the closed loop control system. Also, a PLL servo is used to accomplish high-precision speed and to attain smooth ness. In applying the PLL control to the step motor, a new design method is suggested to solve the control problem which occurs as a result of the limited maximum acceleration of the step motor. A simple design method is suggested without using the complicated multi-step characteirstic of the step motor in constant voltage driving. Computer simulation results agree clorelg with experiments, indicating that the PLL servo system of the step motor designed is very useful.

  • PDF

퍼지 PI 제어기를 이용한 태양광 발전시스템의 MPPT 제어 (The MPPT Control of Photovoltaic System using the Fuzzy PI Controller)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.9-18
    • /
    • 2014
  • This paper proposes the fuzzy PI controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, this paper proposes the MPPT control using the fuzzy PI controller that can be improve a MPPT control performance. The fuzzy PI controller is adjusted a input of PI controller by fuzzy control and compensated a cumulative error of fuzzy control by PI controller. The fuzzy PI MPPT control is compared to conventional PO and IC MPPT method for various temperature and radiation condition. This paper proves the validity of the fuzzy PI controller using these results.

다단계 속도제어를 위한 폐색구간 분할에 대한 최적화에 관한 연구 (I) (A Study on Optimization of Block Sectioning for Step Speed Control (I))

  • 이종우
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.390-396
    • /
    • 2003
  • This paper is focused on an optimal block sectioning technique which are widely used in conventional railway system. We studied braking distance with pure train braking performance to generalize train braking. We tried to apply the braking distance to wayside signaling system to decide optimal block sectioning to reduce headway. The braking distances are obtained for 2 aspects, 3 aspects, 4 aspects and n aspects such that step speed control, are longer than the pure braking distance. We found an optimal solution with the generalized n aspects, and a minimum block distance for ATO mode.

실린더 헤드 스월 측정 및 자동화 방법에 관한 연구 (A Study on Measurement and Automation Method of Cylinder Head Swirl)

  • 이충훈
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.92-99
    • /
    • 2006
  • The swirl ratio of a charge in the cylinder was estimated by calculating the ratio of the rotary speed of charge which could be simulated from the rotary speed of paddle in the swirl measurement apparatus, to the engine speed which could be calculated by measuring intake air flow rate. The automation of the swirl ratio measurement for cylinder head was achieved by controling both valve lift in cylinder head and a suction pressure of surge tank using two step-motors. The number of measurement position for calculating mean swirl ratio was varied by adjusting the interval of valve lift. The mean swirl ratio with varying the number of measurement position showed nearly constant value. Two measurement methods for measuring the swirl ratio were compared, one was to control the suction pressure of the surge tank with PID (proportional, integral, differential) mode with by-pass valve controlled by the step motor and the other did not control the surge tank pressure by fixing the by-pass valve. The difference of the mean swirl ratio between the two measurement methods showed nearly constant value with varying the number of measurement position. This means that the w/o PID control method could be preferred to the PID control method which has been used, due to the simpleness of the swirl measurement.

HBPI 제어기를 이용한 태양광발전 시스템의 MPPT 제어 (MPPT Control of Photovoltaic System using HBPI Controller)

  • 고재섭;정동화
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1864-1871
    • /
    • 2012
  • This paper proposes the hybrid proportional integral(HBPI) controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, in order to solve these problems, this paper proposes HBPI controller that is adjusted gain of conventional PI control using fuzzy control, and the maximum power point tracks using this controller. The validity of the controller proposed in this paper proves through the results of the comparisons.

강인한 디지털 최적모델 추종형 서보시스템의 구성과 그 적용 (Design and its Application of Robust Degital Optimal Model Following Servo System)

  • 이양우;김정택;황창선
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1186-1192
    • /
    • 1994
  • This paper presents an algorithm to design a robust digital model following servo control system in which optimal linear quadratic regulator problem is used to design the control system that make the step/ramp response of the plant kept close to a specified ideal step/ramp response of the model. The quadratic criterion function for a continuous system is used to design the robust digital servo control system. The feasibility of the design technique is shown by the simulation and the proposed method is applied to the speed control of DC servo motor.

  • PDF

Effect of Deep Lumbar Muscle Stabilization Exercise on the Spatiotemporal Walking Ability of Stroke Patients

  • Ahn, Jongchan;Choi, Wonho
    • 국제물리치료학회지
    • /
    • 제10권4호
    • /
    • pp.1873-1878
    • /
    • 2019
  • Background: Walking is a complex activity. The main components of walking include balance, coordination, and symmetrical posture. The characteristics of walking patterns of stroke patients include slow walking, measured by gait cycle and walking speed. This is an important factor that reflects post-stroke quality of life and walking ability. Objective: This study aimed to examine the effect of deep lumbar muscle stabilization exercise on the spatiotemporal walking ability of stroke patients. Design: Quasi-experial study Methods: The experiment was conducted 5 times per week for 4 weeks, with 30 minutes per session, on 10 subjects in the experimental group who performed the deep lumbar muscle stabilization exercise and 10 subjects in the control group who performed a regular exercise. Variables that represent the spatiotemporal walking ability (step length, stride length, step rate, and walking speed) were measured using GAITRrite before and after the experiment and were analyzed. Results: There was a significant difference in the pre- and post-exercise spatiotemporal walking ability between the two groups (p<.05). Furthermore, there was a significant difference in the step rate and walking speed between the two groups (p<.05). Conclusions: Deep lumbar muscle stabilization exercise is effective in improving the walking ability of stroke patients. Therefore, its application will help improve the spatiotemporal walking ability of stroke patients.

퍼지 속도 보상기를 이용한 매입형 영구자석 동기 전동기의 센서리스 속도제어 (A Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor Based on a Fuzzy Speed Compensator)

  • 강형석;김영석
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1405-1411
    • /
    • 2007
  • In this paper, a new speed sensorless control based on a fuzzy compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional proportional plus integrate(PI) control are very sensitive to step change of the command speed, parameter variations and load disturbance. To cope with these problems of the PI control, the estimated speeds are compensated by using the fuzzy logic controller (FLC). In the FLC used by the speed compensator of the IPMSM, the system control parameters are adjusted by the fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.