• Title/Summary/Keyword: Step speed control

Search Result 400, Processing Time 0.026 seconds

Throttle/Brake Combined Control for Vehicle-to-vehicle Distance and Speed Control (찻간 속도/거리제어를 위한 구동력/제동력 통합제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. The control performance has been investigated through vehicle tests. The test vehicle is equipped with a MMW radar sensor, a solenoid-valve-controlled Electronic-Vacuum-Booster(EVB) and a step-motor controlled throttle actuator. The results indicate the proposed throttle/brake control laws can provide satisfactory vehicle-to-vehicle distance and velocity control performance.

  • PDF

The design of a 32-bit Microprocessor for a Sequence Control using an Application Specification Integrated Circuit(ASIC) (ICEIC'04)

  • Oh Yang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.486-490
    • /
    • 2004
  • Programmable logic controller (PLC) is widely used in manufacturing system or process control. This paper presents the design of a 32-bit microprocessor for a sequence control using an Application Specification Integrated Circuit (ASIC). The 32-bit microprocessor was designed by a VHDL with top down method; the program memory was separated from the data memory for high speed execution of 274 specified sequence instructions. Therefore it was possible that sequence instructions could be operated at the same time during the instruction fetch cycle. And in order to reduce the instruction decoding time and the interface time of the data memory interface, an instruction code size was implemented by 32-bits. And the real time debugging as single step run, break point run was implemented. Pulse instruction, step controller, master controllers, BIN and BCD type arithmetic instructions, barrel shit instructions were implemented for many used in PLC system. The designed microprocessor was synthesized by the S1L50000 series which contains 70,000 gates with 0.65um technology of SEIKO EPSON. Finally, the benchmark was performed to show that designed 32-bit microprocessor has better performance than Q4A PLC of Mitsubishi Corporation.

  • PDF

Comparison of Gait Pattern during the Support Phase after Perturbation According to Age (보행 시 지지면 급변에 따른 연령별 운동학적 반응 형태 비교)

  • Chun, Young-Jin;Shin, In-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.281-288
    • /
    • 2011
  • The purpose of this study was to analyze the difference in reaction patterns during the support phase after perturbation in gait according to different age. A total of 12 subjects participated; 5 elderly and 7 adults(control), to investigate the differences between normal and perturbed gait. The step length didn't change during normal and perturbed gait but was longer in the control group. There was no difference in the step width. When the right foot was perturbed, the control group's left foot speed was faster than the elderly group's which was to maintain stability. The elderly flexed both right and left knees more than the control group. After the perturbation, the elderly group had a larger trunk anterior flexion. With the larger flexion of both legs of the elderly group it shows that the lack of knee flexion strength is a factor, that could cause falling and so a prevention program should focus on strengthening the quadriceps. With the excessive trunk flexion after the perturbation by the elderly group observed, it is suggested that while walking everyday a good routine of walking with an upright posture should be developed.

Experimental Design of Disturbance Compensation Control to Improve Stabilization Performance of Target Aiming System (표적지향 시스템의 안정화 성능 향상을 위한 실험적 외란 보상 제어기 설계)

  • Lim Jae-Keun;Kang Min-Sig;Lyou Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.897-905
    • /
    • 2006
  • This study considers an experimental design of disturbance compensation control to improve stabilization performance of main battle tanks. An adaptive non-parametric design technique based on the Filtered-x Least Mean Square(FXLMS) algorithm is applied in the consideration of model uncertainties. The optimal compensator is designed by two-step design procedures: determination of frequency response function of the disturbance compensator which can cancel the disturbance of series of single harmonics by using the FXLMS algorithm and determination of the compensator polynomial which can fit the frequency response function obtained in the first step optimally by using a curve fitting technique. The disturbance compensator is applied to a simple experimental gun-torsion bar-motor system which simulates gun driving servo-system. Along with experimental results, the feasibility of the proposed technique is illustrated. Experimental results demonstrate that the proposed control reduces the standard deviation of stabilization error to 47.6% that by feedback control alone. The directional properties of the FXLMS Algorithm such as the direction of convergence and its convergence speed are also verified experimentally.

A Study on the Rule-Based Auto-tuning PI Controller for Speed Control of D.C Servo Mortor (직류 서보 전동기의 속도제어를 위한 규칙기반 자동동조 PI 제어기에 관한 연구)

  • Park, Wal-Seo;Oh, Hun
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.89-93
    • /
    • 1997
  • As industry gets rapidly automatic, D.C servo motor which is controlled by a PI controller needs accurate control. However, when a system has various characters, it is very difficult to guarantee its accuracy. In this paper, rule-based auto-tuning PI controller for motor speed control system is presented as a way of solving this problem. Some rules are based on Ziegler-Nichols step response and expert knowledge. Control parameters are determined by error, slope, steepest slope point, and permiSSIon overshoot. The accuracy of control is demonstrated by a computer s mulation .

  • PDF

DSP Implementation of a Sinusoidal Encoder using linear Hall Sensor (선형 홀센서를 이용한 정현파 엔코더의 DSP 구현)

  • Hwang, Jung-Ho;Chung, Chan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.298-302
    • /
    • 2012
  • The linear encoder used in the BLAC driving circuit consists usually analog type sensor, and need signal transform from analog sinusoidal to digital one for application in the PWM algorithm that is used to control motor current. When the motor is driven in low speed, it is required many operations and higher quality DSP to convert the hole sensor signal to digital one with enough resolution. In this paper, the another method to convert that signal with enough resolution without calculation of sine function is proposed. This is very simple and have high resolution even if the motor is driving in low speed. To verify the proposed method, BLAC motor is used, and it is proved that the motor is tracking well the reference step signal in the low speed as well as in the high one.

Hybrid Control of Position/Tension for a Stringing Troy Wire (가설 트롤리선의 위치 / 장력 혼합제어)

  • Hong, Jeng-Pyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.932-938
    • /
    • 2009
  • As a stringing troy wire is installed by manual operation, it is necessary to scheme the automatic system for stringing troy wire. To accomplish a task of this kind, in this paper an approach to designing controllers for the hybrid Position/Tension control of a stringing troy wire is presented. Position control system is designed based on equation of dc motor and motion equation of robot, it is controlled by feedback with a detected speed dc motor. Tension control system is designed based on equation of ac servomotor for generating torque and dynamic equation of a troy wire, it is controled by feedback with a detected tension. The control parameters is determined by simulation in independence operation of each system. To suppress a mutual interference that the disturbance occur in operating of two task at same time. Dynamic hybrid control is proposed by feed forward compensator with a disturbance accelerator and a step torque at start. The operation of proposed system is simulated and experimented, results is verified the utilities.

Intelligent Control of a Induction Motor Using a Fuzzy Set (퍼지 논리를 이용한 유도 전동기의 지능제어)

  • Kim, Dong-Hwa;Park, Jin-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2129-2131
    • /
    • 2001
  • Induction motor has been using for industrial field. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the fuzzy control for optimal control of the induction motor in plant. In order to attain optimal control, flux, torque and speed controller has been used and an fuzzy logic based controller has been applied to this system. The results of the fuzzy are compared with the PID controller tuned by the Ziegler-Nickels method, through various simulation based on the various disturbance and step response. The simulation results of the fuzzy control represent a more satisfactory response than those of the conventional controllers.

  • PDF

Modified algorithmic LMI design with applications in aerospace vehicles

  • Chen, Tim;Gu, Anzaldi;Hsieh, Chiayen;Xu, Giustolisi;Wang, Cheng;Chen, C.Y.J.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.69-85
    • /
    • 2021
  • A modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in states is considered in this paper. To do this, at the first level, a two-step strategy is proposed to divide a large system into several interconnected subsystems. As a modified fuzzy control command, the next was received as feedback theory based on the energetic function and the LMI optimal stability criteria which allow researchers to solve this problem and have the whole system in asymptotically stability. Modeling the Fisher equation and the temperature gauge for high-speed aircraft and spacecraft shows that the calculation method is efficient.

Design and Control of Haptic Cue Device for Accelerator Pedal Using MR Brake (MR 브레이크를 이용한 햅틱 큐 가속페달 장치 설계 및 제어)

  • Noh, Kyung-Wook;Han, Young-Min;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.516-522
    • /
    • 2009
  • This paper proposes a new haptic cue vehicle accelerator pedal device using magnetorheological(MR) brake. As a first step, an MR fluid-based haptic cue device is devised to be capable of rotary motion of accelerator pedal. Under consideration of spatial limitation, design parameters are optimally determined to maximize control torque using finite element method. The proposed haptic cue device is then manufactured and integrated with accelerator pedal. Its field-dependant torque is experimentally evaluated. Vehicle system emulating gear shifting and engine speed is constructed in virtual environment and communicated with the haptic cue device. Haptic cue algorithm using the feed-forward control algorithm is formulated to achieve optimal gear shifting in driving. Control performances are experimentally evaluated via feed-forward control strategy and presented in time domain.