• Title/Summary/Keyword: Step speed control

Search Result 397, Processing Time 0.026 seconds

A Study on Optimization of Block Sectioning for Step Speed Control (II) (다단계 속도제어에 의한 폐색구간 분할에 대한 최적화에 관한 연구 (II))

  • 이종우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.397-404
    • /
    • 2003
  • In part I, we studied only step speed control for train, the second part extended to beacon signaling system and moving block system. With the calculated braking distance in part I, part II showed how to reduce headway using the beacon signaling system and moving block system, revealed that the beacon system has a braking distance advantage for sighting allowance with compared to step speed control, proposed beacon installation interval and revealed the braking distance with moving block system being nearly approached to train pure braking distance. We compared three different train control system to decide the best signaling system for a given condition and obtained the result that three systems have a same headway near 10~13 steps speed control.

A study ont he state-variable feedback control of a hybrid step motor (하이브리드 스텝모터의 상태변수 궤환제어에 관한 연구)

  • 권순학;김광배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.566-569
    • /
    • 1987
  • The primary difficulties encountered in the use of step motors are underdamped response when stopping at a specified position and dynamic instability during high-speed slewing. This paper proposes a speed and position detection scheme using the back EMF generated by the rotating permanent magnet field of a two-phase 1.8.deg. hybrid step motor, and presents its application to the state-variable feedback control of the hybrid step motor. All simulation results in a single step response show that the hybrid step motor performances such as peak overshoot and settling time are greatly improved.

  • PDF

A 3-Step Speed Control for Minimizing Energy Consumption for Battery-Powered Wheeled Mobile Robots (배터리로 구동되는 이동 로봇의 에너지 소모 최소화를 위한 3-구간 속도 제어)

  • Kim Byung-Kook;Kim Chong-Hui
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.208-220
    • /
    • 2006
  • Energy of wheeled mobile robot is usually supplied by batteries. In order to extend operation time of mobile robots, it is necessary to minimize the energy consumption. The energy is dissipated mostly in the motors, which strongly depends on the velocity profile. This paper investigates various 3-step (acceleration - cruise - deceleration) speed control methods to minimize a new energy object function which considers the practical energy consumption dissipated in motors related to motor control input, velocity profile, and motor dynamics. We performed an analysis on the energy consumption various velocity profile patterns generated by standard control input such as step input, ramp input, parabolic input, and exponential input. Based on these standard control inputs, we analyzed the six 3-step velocity profile patterns: E-C-E, P-C-P, R-C-R, S-C-S, R-C-S, and S-C-R (S means a step control input, R means a ramp control input, P means a parabolic control input, and E means an exponential control input, C means a constant cruise velocity), and suggested an efficient iterative search algorithm with binary search which can find the numerical solution quickly. We performed various computer simulations to show the performance of the energy-optimal 3-step speed control in comparison with a conventional 3-step speed control with a reasonable constant acceleration as a benchmark. Simulation results show that the E-C-E is the most energy efficient 3-step velocity profile pattern, which enables wheeled mobile robot to extend working time up to 50%.

MPPT Control of Photovoltaic using Variable IC Method (가변 IC 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.27-34
    • /
    • 2012
  • This paper proposes variable incremental conductance(IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. The conventional perturbation & observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small step size reduces a tracking error in the steady state but slows a tracking speed in the transient state. Also, a large step size is fast a tracking speed but increases a tracking error. Therefore, this paper proposes variable IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve a tracking speed and accuracy, when operating point is far from the maximum power point(MPP), the step size uses maximum value and when a operating point is near from the MPP, the step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO and IC MPPT algorithm.

The MPPT Control oh Photovoltaic System using FVSS-PO Method (FVSS-PO를 이용한 태양광 발전시스템의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.20-26
    • /
    • 2013
  • This paper proposes the maximum power point tracking(MPPT) control of photovoltaic system using fuzzy based variable step size perturbation & observation(FVSS-PO) method. Conventional PO and incremental conductance(IC)MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, the fixed step size can't be satisfying both the tracking speed and the tracking accuracy. This paper proposes FVSS-PO MPPT algorithm that adjusts automatically step size of PO by fuzzy control according to operating conditions. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO MPPT algorithm.

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.

A Study on the Lead Angle Control of Step Motor (스텝 모터의 진상각 제어에 관한 연구)

  • 김영석;박성진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.84-88
    • /
    • 1991
  • The lead angle control of step motor for high speed drive is represented in this paper. It was designed position and speed information feedback system which was composed of step motor coupled with encoder, z-80, and hardware. The relationships between the lead angle and speed characteristics are established by experiments.

  • PDF

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.

A Modified Microstep Drive of PM Step Motor (PM 스텝 모터의 개선된 마이크로 스텝 구동)

  • Lee, Tae-Gyoo;Shin, Ki-Sang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.15-17
    • /
    • 1996
  • In this paper, a modified microstep drive of PM step motor is presented. The open-loop drive of a step motor is attractive and widely accepted in applications of speed and position controls. However, the performance of the step motor is limited under the open-loop drive. The closed-loop control is advantages over the open-loop control not only in that step failure never occurs but that the motion is much quicker and smoother. However, a high resolution sensor is needed for detecting position and speed. The modified microstep drive is constructed as a microstep drive with speed feedback. The advantages of the proposed method is that the controller can be designed by a low resolution sensor and is simpler than other closed-loop controller. A concept of vector control is used for verifying the proposed scheme. Simulations show the performance of the proposed method and a comparison with a classic drive method.

  • PDF

Improving the performance of PV system using the N-IC MPPT methods (N-IC MPPT방법을 이용한 태양광 발전시스템의 성능개선)

  • Seo, Tae-Young;Ko, Jae-Sub;Kang, Sung-Min;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.958-959
    • /
    • 2015
  • This paper proposes adaptive incremental conductance(A-IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. Conventional Perturbation & Observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, this paper proposes N-IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve tracking speed and accuracy, when operating point is far from maximum power point(MPP), step size uses maximum value and when operating point is near from MPP, step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional IC MPPT algorithm.

  • PDF