• Title/Summary/Keyword: Step Size

Search Result 1,935, Processing Time 0.051 seconds

Face recognition method using embedded data in Principal Component Analysis (주성분분석 방법에서의 임베디드 데이터를 이용한 얼굴인식 방법)

  • Park Chang-Han;Namkung Jae-Chan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • In this paper, we propose face recognition method using embedded data in super states segmentalized that is specification region exist to face region, hair, forehead, eyes, ears, nose, mouth, and chin. Proposed method defines super states that is specification area in normalized size (92×112), and embedded data that is extract internal factor in super states segmentalized achieve face recognition by PCA algorithm. Proposed method can receive specification data that is less in proposed image's size (92×112) because do orignal image to learn embedded data not to do all loaming. And Showed face recognition rate in image of 92×112 size averagely 99.05%, step 1 99.05%, step 2 98.93%, step 3 98.54%, step 4 97.85%. Therefore, method that is proposed through an experiment showed that the processing speed improves as well as reduce existing face image's information.

Lens Position Error Compensated Fast Auto-focus Algorithm in Mobile Phone Camera Using VCM (VCM을 이용한 휴대폰 카메라에서의 렌즈 위치 오차 보상 고속 자동 초점 알고리즘)

  • Han Chan-Ho;Kim Tae-Kyu;Kwon Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.585-594
    • /
    • 2006
  • Due to the size limit, the voice coil motor (VCM) is adopted in most of the mobile phone camera to control auto-focus instead of step motor. The optical system using the VCM has the property that the focus values are varying even though the same current is induced. It means that an error of the lens position was taken placed due to the characteristics of the VCM. In this paper, a algorithm was proposed to compensate the lens position error using the step size and the search count of each stage. In the proposed algorithm -7 step middle searching stage is inserted the conventional searching algorithm for the fast auto-focus searching and the final searing step size was set to +1 for the precise focus control, respectively. In the experimental results, the focus values was found more fast in the proposed algorithm than the conventional. And more the image quality by the proposed algorithm was superior to that of the conventional.

  • PDF

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

(A study on the step tracking of satellite antenna system) (위성 안테나 시스템의 STEP 추적에 관한 연구)

  • 조도현
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.65-70
    • /
    • 2002
  • In this thesis, we realized tracking system for the purpose of receiving performance improvement of KOREASAT's signal in Korea peninsula. Using Scan-mode antenna point out receivable area without position information sensor and using step-track algorithm reach to peak level. Furthermore, the performance of the completed system was verified by physical experiments that directly receives satellite signal. And decided the optimal size of steps for tracking speed and structure of the system by reiterative approach experiments.

A Study on the Dynamic Behavior of a 2-step Variable Valve Switching System for Automotive Engines (자동차 엔진용 2단 가변밸브 기구의 스위칭 시스템 동적 거동에 관한 연구)

  • Kim, Dongil;Kim, Dojoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.39-48
    • /
    • 2014
  • Variable valve actuation system is one of the widely used techniques to improve the fuel efficiency and power of automotive engines. 2-step variable valve actuation systems are also paid attention for the application to direct acting type valve train systems. Besides its advantages in size, weight, relatively simple structure, ets, however, 2-step variable valve actuation system has inherent disadvantages in dynamic instability of switching system to alter discontinuous lift modes. In this study, both experimental and analytical studies are performed to understand the dynamic behavior of a switching mechanism of a 2-step variable valve actuation system, and present a design method to improve its dynamic instability.

Conjugate finite-step length method for efficient and robust structural reliability analysis

  • Keshtegar, Behrooz
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.415-422
    • /
    • 2018
  • The Conjugate Finite-Step Length" (CFSL) algorithm is proposed to improve the efficiency and robustness of first order reliability method (FORM) for reliability analysis of highly nonlinear problems. The conjugate FORM-based CFSL is formulated using the adaptive conjugate search direction based on the finite-step size with simple adjusting condition, gradient vector of performance function and previous iterative results including the conjugate gradient vector and converged point. The efficiency and robustness of the CFSL algorithm are compared through several nonlinear mathematical and structural/mechanical examples with the HL-RF and "Finite-Step-Length" (FSL) algorithms. Numerical results illustrated that the CFSL algorithm performs better than the HL-RF for both robust and efficient results while the CFLS is as robust as the FSL for structural reliability analysis but is more efficient.

A Study on the SSF algorithm improvement for the optical propagation simulation (광선로 전파방정식 계산을 위한 SSF 알고리즘 개선에 관한 연구)

  • 김민철;김종훈
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.405-412
    • /
    • 1999
  • We propose an effective algorithm, which can predict the detailed behavior of the intensity-modulated high speed optical signal after propagating through an optical fiber. The alogrithm is based on the SSF (Split Step Fourier) Method, however, the step size is automatically calibrated in each calculation step to reduce the number of calculations within given round-off error bound. Applying the algorithm to the 2.5 Gbps 100 km transmission and 10 Gbps 40 km transmission simulations, we achieved the calculation time reduction by maximum 1/120 and 1/56 of the calculation time by using the SSF fixed step algorithm previously known. The root-mean-square of the round-off error was kept within -30 dB compared to the signal level throughout the calculation.

  • PDF

The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm (적응시간 간격 알고리즘을 이용한 KIM의 계산 효율성 개선)

  • Hyun Nam;Suk-Jin Choi
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.331-341
    • /
    • 2023
  • A numerical forecasting models usually predict future states by performing time integration considering fixed static time-steps. A time-step that is too long can cause model instability and failure of forecast simulation, and a time-step that is too short can cause unnecessary time integration calculations. Thus, in numerical models, the time-step size can be determined by the CFL (Courant-Friedrichs-Lewy)-condition, and this condition acts as a necessary condition for finding a numerical solution. A static time-step is defined as using the same fixed time-step for time integration. On the other hand, applying a different time-step for each integration while guaranteeing the stability of the solution in time advancement is called an adaptive time-step. The adaptive time-step algorithm is a method of presenting the maximum usable time-step suitable for each integration based on the CFL-condition for the adaptive time-step. In this paper, the adaptive time-step algorithm is applied for the Korean Integrated Model (KIM) to determine suitable parameters used for the adaptive time-step algorithm through the monthly verifications of 10-day simulations (during January and July 2017) at about 12 km resolution. By comparing the numerical results obtained by applying the 25 second static time-step to KIM in Supercomputer 5 (Nurion), it shows similar results in terms of forecast quality, presents the maximum available time-step for each integration, and improves the calculation efficiency by reducing the number of total time integrations by 19%.

Kinetic Measurement of the Step Size of DNA Unwinding by Bacteriophage T7 DNA Helicase gp4 (T7 박테리오파지 gp4 DNA helicase에 의한 DNA unwinding에서 step size의 반응속도론적 측정)

  • Kim, Dong-Eun
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.131-140
    • /
    • 2004
  • T7 bacteriophage gp4 is the replicative DNA helicase that unwinds double-stranded DNA by utilizing dTTP hydrolysis energy. The quaternary structure of the active form of T7 helicase is a hexameric ring with a central channel. Single-stranded DNA passes through the central channel of the hexameric ring as the helicase translocates $5'\rightarrow3'$ along the single-stranded DNA. The DNA unwinding was measured by rapid kinetic methods and showed a lag before the single-stranded DNA started to accumulate exponentially. This behavior was analyzed by a kinetic stepping model for the unwinding process. The observed lag phase increased as predicted by the model with increasing double-stranded DNA length. Trap DNA added in the reaction had no effect on the amplitudes of double-stranded DNA unwound, indicating that the $\tau7$ helicase is a highly processive helicase. Global fitting of the kinetic data to the stepping model provided a kinetic step size of 10-11 bp/step with a rate of $3.7 s^{-1}$ per step. Both the mechanism of DNA unwinding and dTTP hydrolysis and the coupling between the two are unaffected by temperature from $4∼37^{\circ}C$. Thus, the kinetic stepping for dsDNA unwinding is an inherent property of tile replicative DNA helicase.