• Title/Summary/Keyword: Step Perturbation

Search Result 93, Processing Time 0.018 seconds

Analysis of Burnable Poison Effect on Power Distribution using Power Sensitivity Coefficient Concept (출력민감도 계수개념을 이용한 가연성 독붕봉이 출력분포에 미치는 영 향의 분석)

  • Yi, Yu-Han;Oh, Soo-Youl;Seong, Seung-Hwan;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 1988
  • The low leakage leading pattern has features as the placement of some fresh fuel assemblies in the core interior to reduce the neutron fluence on the pressure vessel and to enhance the neutron economics. But as fresh fuel assemblies are loaded in the core interior, the local power tends to exceed safety limit due to the high reactivity of the fresh assemblies. Therefore, a large number of burnable poisons must be utilized in a low leakage scheme to suppress the high assembly power as well as the excess reactivity. In this study the effects of burnable poisons are treated as a perturbation on the power distribution, and the 'Power Sensitivity Coefficient' concept is adopted. An application study is performed for cycle 1 of the Korea Nuclear Unit-7 (KNU-7) to justify the usefulness of the reverse depletion method coupled with the above concept. To obtain the optimal burnable poision distribution at the given burnup step, the linear programming technique is adopted. The result shows maximum 4.5% error in the amount of burnable poisons between the calculated and the reference values. It is concluded that the design methodology which consists of the reverse depletion, the power sensitivity coefficient concept, and the linear programming technique can be used to find the optimal turnable poison distribution.

  • PDF

3D-QSAR Study on the Influence of Alrylamino (R) Substituents on Herbicidal Activity of Thiourea Analogues

  • Soung, Min-Gyu;Park, Kwan-Yong;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1469-1473
    • /
    • 2010
  • Influences of alrylamino (R) substituents on the herbicidal activity ($pI_{50}$) of 1-(4-chloro-2-fluoro-5-propargyloxypheny)-3-(R)-thiourea analogues (1 ~ 35) against the barnyard grass (Echinochloa crusgalli) in the pre-emergence step were discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) as the three dimensional quantitative structure-activity relationship (3D-QSAR) method. The statistically most satisfactory CoMFA models for the herbicidal activity against the barnyard grass had the better predictability ($r^2{_{cv.}}$) and correlativity ($r^2{_{ncv.}}$) than those of CoMSIA models. The optimized CoMFA model 1($r^2{_{cv.}}$ = 0.531 & $r^2{_{ncv.}}$ = 0.931) with the sensitivity to the perturbation (${d_q}^{2'}{dr^2}_{yy'}$ = 1.081) and the prediction ($q^2$ = 0.475) produced by a progressive scrambling analyses were not dependent on chance correlation. And statistical qualities with the atom based fit alignment (AF) were slightly higher than those of the field fit alignment (FF). According to the optimized CoMFA model 1, the contribution ratio (%) of the steric field (76.9%) on the herbicidal activity of the Thioureas was three-fold higher than that of the electrostatic field (20.1%) and the hydrophobic field (3.0%) had the least influence. A steric favor group is on the vicinity of the nitrogen atom in alrylamino (R) substituent, and a steric disfavor group is on the outer side of alrylamino (R) substituent. Thus, as the size of alrylamino (R) substituent increases, so does the herbicidal activity of the substituent.

Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment (상향류식 혐기성 슬러지 블랭킷 반응조에 비교한 생물전기화학 반응조의 산성 주정폐수처리성능)

  • Feng, Qing;Song, Young-Chae;Yoo, Kyuseon;Lal, Banwari;Kuppanan, Nanthakumar;Subudhi, Sanjukta
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.279-290
    • /
    • 2016
  • The performance of upflow anaerobic bioelectrochemical reactor (UABE), equipped with electrodes (anode and cathode) inside the upflow anaerobic reactor, was compared to that of upflow anaerobic sludge blanket (UASB) reactor for the treatment of acidic distillery wastewater. The UASB was stable in pH, alkalinity and VFAs until the organic loading rate (OLR) of 4.0 g COD/L.d, but it became unstable over 4.0 g COD/L.d. As a response to the abrupt doubling in OLR, the perturbation in the state variables for the UABE was smaller, compared to the UASB, and quickly recovered. The UABE stability was better than the UASB at higher OLR of 4.0-8.0 g COD/L.d, and the UABE showed better performance in specific methane production rate (2,076mL $CH_4/L.d$), methane content in biogas (66.8%), and COD removal efficiency (82.3%) at 8.0 g COD/L.d than the UASB. The maximum methane yield in UABE was about 407mL/g $COD_r$ at 4.0 g COD/L.d, which was considerably higher than about $282mL/g\;COD_r$ in UASB. The rate limiting step for the bioelectrochemical reaction in UABE was the oxidation of organic matter on the anode surface, and the electrode reactions were considerably affected by the pH at 8.0 g COD/L.d of high OLR. The maximum energy efficiency of UABE was 99.5%, at 4.0 g COD/L.d of OLR. The UABE can be an advanced high rate anaerobic process for the treatment of acidic distillery wastewater.