• Title/Summary/Keyword: Step Hull

Search Result 85, Processing Time 0.036 seconds

Study on the Transvers Step Application Location of High Speed Planning Hull by Numerical Analysis (수치해석을 통한 고속활주선의 횡방향 Step적용 위치에 관한 연구)

  • Kim, Byung-Jae;Kim, Sang-Won;Park, Geun-Hong;Lee, Gyoung-Woo;Cho, Dae-Hwan;Seo, Kwang-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.234-235
    • /
    • 2017
  • In order to improve the frictional resistance of existing high-speed planning hull, a step-like linear transformation has been researched which forms an air layer on the bottom. However, there is a lack of research on the proper position to confirm the effect of Running Attitude and step on each position. In this study, we confirmed the change of the Running Attitude, the effect of the step and the change of the frictional resistance when the step was applied in the longitudinal location.

  • PDF

A Review on the Performance Test of a High-Speed Planing Hull with 35 knot Speed by Appling the Streamlined Step of Hull Form (유선형 스텝 선형을 적용한 35 knot급 고속활주선의 성능평가에 대한 고찰)

  • Moon, Byung Young;Go, Ho Nam;Lee, Ki Yeol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.95-102
    • /
    • 2018
  • As a recent technical approach, a high-speed planing hull was tried to realize a friction reducing system by simultaneously actuating the triple streamlined step hull form in association with optimum speed of 35 knot planing for fishing boat. In this approach, the streamlined step hull form with triple structure of type was attached under the bottom of high-speed planing hull, while a friction resistance is reduced in the process of running at the speed of 35 knot. In addition, this research was to make a performance test as to the manufactured product and acquire the purposed values and the development items. Actually, after manufacturing the desired prototype of high-speed planing hull, the significant items, fuel efficiency (second) and amount of fuel consumption (degree) including maximum speed (knot) were estimated for a performance test. And tensile strength (MPa) and bend strength (MPa) as to the completed prototype like a high speed planing hull were also acquired during the test.

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery

  • Jung, Ji-Young;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.78-90
    • /
    • 2012
  • Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.

Two-dimensional modeling of stepped planing hulls with open and pressurized air cavities

  • Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.162-171
    • /
    • 2012
  • A method of hydrodynamic discrete sources is applied for two-dimensional modeling of stepped planing surfaces. The water surface deformations, wetted hull lengths, and pressure distribution are calculated at given hull attitude and Froude number. Pressurized air cavities that improve hydrodynamic performance can also be modeled with the current method. Presented results include validation examples, parametric calculations of a single-step hull, effect of trim tabs, and performance of an infinite series of periodic stepped surfaces. It is shown that transverse steps can lead to higher lift-drag ratio, although at reduced lift capability, in comparison with a stepless hull. Performance of a multi-step configuration is sensitive to the wave pattern between hulls, which depends on Froude number and relative hull spacing.

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Data Exchange of Initial Hull Form and Compartment Information with CAD system using STEP (STEP을 이용한 초기 선형 및 구획정보의 범용CAD 시스템으로의 데이터 교환 방법)

  • Seo, Jung-Woo;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.119-126
    • /
    • 1997
  • In this parer, a protocol system is developed, which automates the sequential procedure that transforms the information of compartment generated by SIKOB, the calculation program of ship design, to the STEP format which is used as the input data of next level of ship design. The schemata representing hull form and compartment are constructed. The STEP physical files are made by instancing these schemata using the results of SIKOB. They are transmitted to the CAD system and then worked on the CAD system. It means that they could be used as the data of next level of ship design.

  • PDF

A Convex Hull Algorithm for 2D Patterns (2차원 패턴의 볼록 헐 알고리즘)

  • 홍기천;오일석
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.4
    • /
    • pp.363-369
    • /
    • 2001
  • This paper proposes a convex hull algorithm for 2D patterns. The proposed algorithm is divided ito 2steps; candidate convex point extraction and final convex point extraction. First step removes as many points as possible that cannot be convex points using simple operation. Second step computes final convex hull of 2D patterns. This method accelerates execution time, since it consists of simple operations. Experimental results show that the proposed method is faster than other 2 methods in speed.

  • PDF

Vibration Control of Stiffened Hull Structure Using MFC Actuator (MFC 작동기를 이용한 보강 Hull 구조물의 능동 진동 제어)

  • Jeon, Jun-Cheol;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.273-278
    • /
    • 2011
  • This work presents an active vibration control of a stiffened hull structure using a flexible macro fiber composite (MFC) actuator. As first step, the governing equation of the hull structure is derived in a matrix form and its dynamic characteristics such as natural frequency are obtained via a finite element analysis (FEA). The natural frequencies obtained from the FEA are compared with those determined from experimental measurement. After formulating the control model in a state space representation, an optimal controller is designed in order to attenuate the vibration of the stiffened hull structure. The controller is then empirically realized through dSPACE and control responses are evaluated in time domain.

  • PDF