• Title/Summary/Keyword: Step Depth

Search Result 577, Processing Time 0.024 seconds

METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

  • Goring, Markus;Fay, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.653-664
    • /
    • 2013
  • The design of computer-based instrumentation and control (I&C) systems is determined by the allocation of I&C functions to I&C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I&C functions, so that the reliability proof of the I&C systems requires the accomplishment of I&C system design analyses throughout the I&C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

Development of Neural-Networks-based Model for the Generation of an Earthquake Response Spectrum and a Design Spectrum (지진 응답 스펙트럼과 설계용 응답 스펙트럼 생성을 위한 신경망 모델의 개발)

  • 조빈아;이승창;한상환;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.447-454
    • /
    • 1998
  • The paper describes the second half of the research for the development of Neural-Networks-based model for the generation of an Artificial earthquake and a Response Spectrum(NNARS). Based on the redefined traditional processes related to the generation of an earthquake acceleration response spectrum and design spectrum, four neural-networks-based models are proposed to substitute the traditional processes. RS_NN tries to directly generate acceleration response spectrum with basic data that are magnitude, epicentral distance, site conditions and focal depth. The test results of RS_NN are not good because of the characteristics of white noise, which is randomly generated. ARS_NN solve this problem by the introduction of the average concept. IARS_NN has a role to inverse the ARS_NN, so that is applied to generate a ground motion accelerogram compatible with the shape of a response spectrum. Additionally, DS_NN directly produces design spectrum with basic data. As these four neural networks are simulated as a step by step, the paper describes the methods to generate a response spectrum and a design spectrum using the neural networks.

  • PDF

A Study on Design and Fabrication of SRD Impulse Generator and Antenna for Ground Penetrating Radar System (지반투과 레이더 시스템을 위한 SRD 임펄스 발생기 및 안테나의 설계 및 제작에 관한 연구)

  • Kim, Hyoung-Jong;Shin, Suk-Woo;Choi, Gil-Wong;Choi, Jin-Joo;Shin, Shang-Youal
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.509-516
    • /
    • 2011
  • In this paper, a ground penetrating radar(GPR) system is implemented for landmine detection. The performance of the GPR system is associated with the characteristics of local soil and buried target. The choice of the center frequency and the bandwidth of the GPR system are the key factors in the GPR system design. To detect a small and shallow target, the higher frequencies are needed for high depth resolution. We have been designed, fabricated and tested a new impulse generator using step recovery diodes. The measured impulse response has an amplitude of 6.2V and a pulse width of 250ps. The implemented GPR system has been tested real environmental conditions and has proved its ability to detect a small buried target.

A Study on the High Speed Characteristics of Plastic Mould Steel using Ball End Mill AlTiN Coated Layers (볼 엔드밀 AlTiN코팅 층수에 따른 플라스틱금형강의 고속가공에 관한 연구)

  • Lee, Seung-Chul;Cho, Gyu-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • This paper investigated into process characteristics of AlTiN coated layers for machining to the direction of upper and lower in plastic mold material (KP-4) with the cemented carbide ball endmill with the diameter of 8mm coated AlTiN layers (1~4) step by step using machining center. The material used in experiments was KP-4 that was machined by three types of inclined angles; $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ As estimated mechanical properties of AlTiN coated layers, it was shown the most result in the condition of three layered coating that the coating that the coating depth, the hardness of the coated layer and the surface roughness of the coated layer were $13{\mu}m$, Hv 3027.3 and $0.042{\mu}m$, respectively. The cutting component was better at the condition of upper direction than that of lower direction in all experimental conditions and indicated to be less which the bigger angle of the material was increased the effective diameter of the tool.

3D Simulation of Earthquake Ground Motion Using Locally Variable Time-Step Finite-Difference Method

  • Kang, Tae-Seob;Baag, Chang-Eob
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.18-18
    • /
    • 2003
  • Three-dimensional finite-difference simulation of earthquake ground motion is performed using a locally variable time-step (LVTS) scheme matching with discontinuous grids. Discontinuous grids in three directions and extension of the discontinuous grids' boundary to the free-surface in the LVTS scheme minimize the cost of both the computational memory and the CPU time for models like the localized sedimentary basin. A simplified model of sedimentary basin is dealt to show the feasibility and efficiency of the LVTS scheme. The basin parameters are examined to understand the main characteristics on ground-motion response in the basin. The results show that the seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to the constructive interference of the direct S-wave with the basin-edge induced surface waves. The ground-motion amplification over the deepest part of the basin is relatively lower than that above the shallow basin edge. Therefore the ground-motion amplification may be more related to the source azimuth or the direction of the incident waves into the basin rather than the depth of it.

  • PDF

Flow Resistance by Discontinuous Topography in Simulating Shallow-water Flow (천수 흐름 모의에서 불연속 지형에 따른 흐름 저항)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.175-181
    • /
    • 2019
  • The hydrostatic pressure, thrust, and wall reflection by a step were studied as the flow resistance due to the discontinuous topography by using the Hwang's scheme in calculating fluxes with an approximate Riemann solver. Compared with the broad-crested weir experiments, the result simulated by using the thrust was the best among them. Hwang's scheme with the thrust by a step was applied to the side weir experiment. The results of simulation agreed well with those of the experiment. Compared to the existing depth-integrated model, the accuracy was slightly lowered, but the running time was reduced to about 20 %.

Effect of Silane Coupling Treatment on the Joining and Sealing Performance between Polymer and Anodized Aluminum Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.122-131
    • /
    • 2021
  • In the fabrication of joined materials between anodized aluminum alloy and polymer, the performance of the metal-polymer joining is greatly influenced by the chemical properties of the oxide film. In a previous study, the dependence of physical joining strength on the thickness, structure, pore formation, and surface roughness of films formed on aluminum alloys is investigated. In this study, we investigated the effect of silane coupling treatment on the joining strength and sealing performance between aluminum alloy and polymer. After a two-step anodization process with additional treatment by silane, the oxide film with chemically modified nanostructure is strongly bonded to the polymer through physical and chemical reactions. More specifically, after the two-step anodization with silane treatment, the oxide film has a three-dimensional (3D) nanostructure and the silane components are present in combination with hydroxyl groups up to a depth of 150 nm. Accordingly, the joining strength between the polymer and aluminum alloy increases from 29 to 35 MPa, and the helium leak performance increases from 10-2-10-4 to 10-8-10-9 Pa ㎥ s-1.

Development of the Instructional Model Emphasizing Discussion and the Characteristics of Verbal Interactions during its Implementation in a Science High School (과학고 토론수업을 위한 수업모형 개발과 적용과정에서 나타난 언어적 상호작용의 특징)

  • Kim, Hyun-Kyung;Choi, Byung-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.4
    • /
    • pp.359-372
    • /
    • 2009
  • The purpose of this study was to develop the FPHER (problem finding, prediction & discussion, hands-on & experiment, explanation & arrangement, enrichment) instructional model emphasizing the social interactions, and as applied, characteristics of verbal interactions were examined overall and with each step. For this study, this model was applied to the students in 10th grade chemistry classes in a science high school, and their group verbal interactions were recorded and analyzed. The results of this study show that most verbal interactions were classified as on-task interactions in the FPHER instructional model, where suggestions were predominant to the acceptance of opinions. There were a few interactions in the F step, and there were many suggestions relating to the solutions and lacking in confidence in the P step. There were many suggestions relating to the process and orders in the H step. Also, there were many questions, some explanation and dissatisfaction, as well as a lack of confidence in the E step. There were many high-level interactions in the R step, and mainly interactions with worksheets showing high-level problem-solving abilities. More in-depth research is needed to develop the teaching strategies that can activate student-to-student interaction and student-teacher interaction with regard to instructions, enhancing thought as counter-argument, justification or sophistication, based on the instructional model in this study.

Application of Geophysical Techniques for Observing the Void Ratio Changes of Dredged Soils (준설토의 간극비 변화 관찰을 위한 물리탐사기법의 적용)

  • Hong, Young-Ho;Lee, Jong-Sub;Lee, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.19-28
    • /
    • 2014
  • It is necessary to understand the behavior of the soils for the dredging constructions. The objective of this study is to estimate void ratio and density changes of the dredged soils by using the geophysical testing methods. A series of laboratory tests is performed to obtain geotechnical index properties of the specimen, retrieved from the west coastal of Korea. The sedimentation and self-weight consolidation tests are carried out with observing changes of the interfacial height and the elastic wave velocities. The same amounts of the soils are poured into the testing column at intervals of 12 hours until the interheight reaches to a certain level. After the completion of the sedimentatation and self-weight consolidation tests, downward permeability test is performed to assess a tidal influence in the nearshore. The mini resistance cone is penetrated into the specimen to measure the electrical resistivity with depth. All tests are completely finished, the weight of specimens are measured to calculate the void ratio with the depth. Experimental results show that the aspects of the self-weight consolidation are invisible during dredging process because of rapid sedimentation characteristics of ML. However, the elastic wave velocities increase with increasing in the effective stresses. During permeability test, measured permeability and the elastic wave velocities maintain almost identical values. Void ratio based on the elastic wave velocities changes linearly with time during the step dumpings. Void ratio estimated by the electrical resistivity represents the repeatedly layered depositions according to the step-by-step dumpings. Void ratio determined by soil sampling is similar to those of elastic waves and electrical resistivity profiles. This experimental study demonstrates that the geophysical testing methods may be an effective method for evaluating the behavior of dredged soils.

특정 사례터널 해석 결과 및 평가

  • Lee, Seung-Rae;O, Se-Bung;Baek, Gyu-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.123-132
    • /
    • 1991
  • The GEOKST program was used to solve the tunnel example problem. The package can solve such geotechnical problem as excavation, embankment, foundations, etc., in which the soil can be modeled by various elastoplastic geomaterial models. The main objective was to consider the effects of excavation depth to the face of the tunnel on the stability of the ground and support system. Depended on the strength of the ground materials, the limit excavation depth without any support system could be established by analyzing three-dimensional excavation problem. In this given example problem, the strengths of the ground materials were enough for the stability of the tunnel without any support system up to fairly deep excavation and the maximum tunnel section displacement was stabilized as the excavation proceed. The asymptotic value was approximately the same as that of the plane strain analysis. Thus, assuming the plain strain condition and simulation the actual excavation procedure, the maximum tunnel section displacement was caculated after final step. The maximum calculated displacement occured at the top section of the tunnel geometry and was about 8mm.

  • PDF