• Title/Summary/Keyword: Stemming

Search Result 267, Processing Time 0.03 seconds

Uncertainty Quantification of the Experimental Spectroscopic Factor from Transfer Reaction Models

  • Song, Young-Ho;Kim, Youngman
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1247-1254
    • /
    • 2018
  • We study the uncertainty stemming from different theoretical models in the spectroscopic factors extracted from experiments. We use three theoretical approaches, the distorted wave Born approximation (DWBA), the adiabatic distorted wave approximation (ADWA) and the continuum discretized coupled-channels method (CDCC), and analyze the $^{12}C(d,p)^{13}C$, $^{14}C(d,p)^{15}C$ reactions. We find that the uncertainty associated with the adopted theoretical models is less than 20%. We also investigate the contribution from the remnant term and observe that it gives less than 10% uncertainty. We finally make an attempt to explain the discrepancy in the spectroscopic factors of $^{17}C(\frac{3}{2}^+)$ between the ones extracted from experiments and from shell model calculations by analyzing the $^{16}C(d,p)^{17}C$ reaction.

Geostatistical Integration of Different Sources of Elevation and its Effect on Landslide Hazard Mapping

  • Park, No-Wook;Kyriakidis, Phaedon C.
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.453-462
    • /
    • 2008
  • The objective of this paper is to compare the prediction performances of different landslide hazard maps based on topographic data stemming from different sources of elevation. The geostatistical framework of kriging, which can properly integrate spatial data with different accuracy, is applied for generating more reliable elevation estimates from both sparse elevation spot heights and exhaustive ASTER-based elevation values. A case study from Boeun, Korea illustrates that the integration of elevation and slope maps derived from different data yielded different prediction performances for landslide hazard mapping. The landslide hazard map constructed by using the elevation and the associated slope maps based on geostatistical integration of spot heights and ASTER-based elevation resulted in the best prediction performance. Landslide hazard mapping using elevation and slope maps derived from the interpolation of only sparse spot heights showed the worst prediction performance.

Sensitivity of Flow Metrics to Climate Variability and Extremes in Korea

  • Kim, Jong-Suk;Jain, Shaleen;Yuk, Ji Moon;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.117-117
    • /
    • 2016
  • The natural hydrologic regime is intimately tied to the structure and function of stream and riparian ecosystems. Consequently, understanding the nature and extent of perturbations to the hydrologic regime, stemming from episodic-to-seasonal and longer-term climatic variations, as well as anthropogenic influences is an important starting point for developing an improved understanding of the coupled human-environmental systems. Herein, we pursued to explicate sensitivity of ecologically relevant flow metrics to climate variability and extremes in the five major river basins, Korea.

  • PDF

Enzymatic Formation of 13,26-Dihexyl-1,14-dioxacyclohexacosane-2,15-dione via Oligomerization of 12-Hydroxystearic Acid

  • Lee, Chan-Woo;Kimura, Yoshiharu;Chung, Jin-Do
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.919-925
    • /
    • 2009
  • The enzymatic polymerization of 12-hydroxystearic acid (12-HSA) was carried out with Lipase $CA^{(R)}$ in benzene to produce poly(12-hydroxystearate) (PHS) with a low molecular weight. When this polymerization was continued for a long reaction time, the PHS once formed was depolymerized into a cyclic diester, 13,16-dihexyl-1,14-dioxacyclohexacosane-2,15-dione (12-HSAD). Similar polymerization and depolymerization were observed when 12-hydroxyoleic acid (12-HOA) was treated with Lipase $CA^{(R)}$, whereas only polymerization occurred when 12-hydroxydodecanoic acid (12-HDA) was treated in a similar manner. The preferential formation of cyclic diesters for 12-HSA was attributed to the structural requirements due to the bulky n-hexyl side groups stemming from the ring systems.

Confidentiality and the Riddick Principle in International Commercial Arbitration

  • Ahn, Keon-Hyung
    • Journal of Arbitration Studies
    • /
    • v.31 no.3
    • /
    • pp.43-68
    • /
    • 2021
  • This paper seeks to provide a comprehensive review of the international rules of law on the obligations of confidentiality and its exceptions in international commercial arbitration, including the Riddick principle stemming from the common law jurisdiction. To this end, this article examines and analyzes developed countries' arbitration legislation including relevant case laws and the most recent leading institutional rules. Given the fact that the increasing use of discovery in international commercial arbitration and that the parties and practitioners in civil law countries are not familiar with the concept of the Riddick principle and its implied undertaking to a court, this article introduces the concept of the Riddick principle with some analysis for the recent case laws. Finally, this paper makes some suggestions to strengthen the compliance of confidentiality in international commercial arbitration by introducing new rules on confidentiality, inter alia, sanctions for breaching of the obligations of confidentiality.

A Study on the Integration Between Smart Mobility Technology and Information Communication Technology (ICT) Using Patent Analysis

  • Alkaabi, Khaled Sulaiman Khalfan Sulaiman;Yu, Jiwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.89-97
    • /
    • 2019
  • This study proposes a method for investigating current patents related to information communication technology and smart mobility to provide insights into future technology trends. The method is based on text mining clustering analysis. The method consists of two stages, which are data preparation and clustering analysis, respectively. In the first stage, tokenizing, filtering, stemming, and feature selection are implemented to transform the data into a usable format (structured data) and to extract useful information for the next stage. In the second stage, the structured data is partitioned into groups. The K-medoids algorithm is selected over the K-means algorithm for this analysis owing to its advantages in dealing with noise and outliers. The results of the analysis indicate that most current patents focus mainly on smart connectivity and smart guide systems, which play a major role in the development of smart mobility.

Masked Face Temperature Measurement System Using Deep Learning (딥러닝을 활용한 마스크 착용 얼굴 체온 측정 시스템)

  • Lee, Min Jeong;Kim, Yoo Mi;Lim, Yang Mi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.208-214
    • /
    • 2021
  • Since face masks in public were mandated during COVID-19, more people have taken temperature checks, with their masks on. The study has developed a contactless thermal camera that accurately measures temperatures of people wearing different kinds of masks, detect people wearing masks wrong, and record the temperature data. The built-in system that identifies people wearing masks wrong is what masks our contactless thermal camera differentiated from other thermal cameras. Also our contactless thermal camera can keep track of the number of mask wearers in different regions and their temperatures. Thus, the analysis of such regional data can significantly contribute to stemming the spread of the virus.

Some Influences of Anisotropy in Clay Soil and Rocks

  • R.H.G.Parry
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.06c
    • /
    • pp.1.2-22
    • /
    • 1997
  • Anisotropic behaviour in soils and soft rocks may be either fabric of stress related ultra in practice is invariably a combination of both. Theoretical studies in the paper include tile iMluence oil untrained strength of assuming both the critical state and Mo21r-Coulomb concepts to hold, and the influence of elastic anisotropy oil predicted undrained effective stress paths. The predictions stemming from these theoretical concepts are examined in the light of evidence from triaxial compression and extension tests oil laboratory prepared, compacted and natural clays and from triaxial compression tests on clay shales. The experimental studies also show the Buence of sample orientation on untrained snear strength, as wen as the iIBluence of anisotropy old the effective stress angle cishearing resistance and of stress patn on measured stiffness.

  • PDF

Comparison of Fall Detection Systems Based on YOLOPose and Long Short-Term Memory

  • Seung Su Jeong;Nam Ho Kim;Yun Seop Yu
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • In this study, four types of fall detection systems - designed with YOLOPose, principal component analysis (PCA), convolutional neural network (CNN), and long short-term memory (LSTM) architectures - were developed and compared in the detection of everyday falls. The experimental dataset encompassed seven types of activities: walking, lying, jumping, jumping in activities of daily living, falling backward, falling forward, and falling sideways. Keypoints extracted from YOLOPose were entered into the following architectures: RAW-LSTM, PCA-LSTM, RAW-PCA-LSTM, and PCA-CNN-LSTM. For the PCA architectures, the reduced input size stemming from a dimensionality reduction enhanced the operational efficiency in terms of computational time and memory at the cost of decreased accuracy. In contrast, the addition of a CNN resulted in higher complexity and lower accuracy. The RAW-LSTM architecture, which did not include either PCA or CNN, had the least number of parameters, which resulted in the best computational time and memory while also achieving the highest accuracy.

A Comprehensive Survey of TPM for Defense Systems

  • Cheol Ryu;Jae-Ho Lee;Do-Hyung Kim;Hyung-Seok Lee;Young-Sae Kim;Jin-Hee Han;Jeong-nyeo Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1953-1967
    • /
    • 2024
  • Lately, there has been a notable surge in the defense industry's efforts to develop highly advanced intelligent systems. These systems encompass sophisticated computing platforms that boast an impressive level of autonomy. However, it's important to acknowledge that these very systems are not impervious to vulnerabilities stemming from both hardware and software tampering. Within the context of this discourse, our focus of the survey is directed towards the hardware security module. This component stands out for its capability to offer a significantly heightened level of protection when compared to conventional software-based techniques. Through the lens of this paper, we embark on a comprehensive survey of Trusted Platform Module (TPM), a hardware security module, shedding light on its potential to fortify the defense against threats that emerge from various vectors of attack.