• Title/Summary/Keyword: Stem-loop sequence

Search Result 23, Processing Time 0.03 seconds

Plant RNA Virus-Host Interaction: Potato virus X as a model system

  • Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.14-14
    • /
    • 2003
  • Potato virus X (PVX), the type member of Potexvirus genus, is a flexuous rod-shaped virus containing a single-stranded (+) RNA. Infection by PVX produces genomic plus- and minus-strand RNAs and two major subgenomic RNAs (sgRNAs). To understand the mechanism for PVX replication, we are studying the cis- and/or trans-acting elements required for RNA replication. Previous studies have shown that the conserved sequences located upstream of two major sgRNAs, as well as elements in the 5' non-translated region (NTR) affect accumulation of genomic and sg RNAs. Complementarity between sequences at the 5' NTR and those located upstream of two major sgRNAs and the binding of host protein(s) to the 5' NTR have shown to be important for PVX RNA replication. The 5 NTR of PVX contains single-stranded AC-rich sequence and stem-loop structure. The potential role(s) of these cis-elements on virus replication, assembly, and their interaction with viral and host protein(s) during virus infection will be discussed based on the data obtained by in vitro binding, in vitro assembly, gel shift mobility assay, host gene expression profiling using various mutants at these regions.

  • PDF

Sequence Analysis, Molecular Cloning and Restriction Mapping of Mitochondreal Genome of Domesticated Silkworm, Bombyx mori (누에 미토콘드리아 유전체의 제한효소 지도작성, 클로닝 및 염기서열 분석)

  • 이진성;성승현;김용성;서동상
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.14-23
    • /
    • 2000
  • The mitochondrial genome of domesticated silkworm (Bombyx mori) was mapped with five restriction endonucleases (BamHI, EcoRI, HindIII, PstI and XbaI), the entire genome was cloned with HindIII and EcoRI. From the end sequencing results of 5$^1$and 3$^1$region for full genome set of eleven mitochondrial clones, the seven mitochondrial genes (NADH dehydrogenase 6, ATPase 6, ATPase 8, tRN $A^{Lys}$, tRN $A^{Asp}$, tRN $A^{Thr}$ and tRN $A^{Phe}$ of mori were identified on the basis of their nucleotide sequence homology. The nucleotide composition of NADH dehydrogenase 6 was heavily biased towards adenine and thymine, which accounted for 87.76%. On basis of the sequence similarity with published tRNA genes from six insect species, the tRN $A^{Lys}$, tRN $A^{Asp}$ and tRN $A^{Thr}$ were showed stable canonical clover-leaf tRNA structures with acceptible anticodons. However, both the DHU and T$\psi$C arms of tRN $A^{Phe}$ could not form any stable stem-loop structure. The two overlapping gene pairs (tRN $A^{Lys}$ -tRN $A^{ASP}$ and ATPase8-ATPase6) were found from our sequencing results. The genes are encoded on the same strad. ATPase8 and ATPase6 overlaps (ATGATAA) which are a single example of overlapping events between abutted protein-coding genes are common, and there is evidence that the two proteins are transcribed from a single bicistronic message by initiation at 5$^1$terminal start site for ATPase8 and at an internal start site for ATPase6. Ultimately, this result will provide assistance in designing oligo-nucleotides for PCR amplification, and sequencing the specific mitochondrial genes for phylogenetics of geographic races, genetically improved silkworm strains and wild silkworm (mandarina) which is estimated as ancestal of domesticated silkworm.sticated silkworm.

  • PDF

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

γ-Glutamyltranspeptidase Gene from Bacillus subtilis BS 62 (Bacillus subtilis BS 62의 γ-Glutamyltranspeptidase 유전자)

  • Lee, Tae-Eun;Yoon, Min-Ho;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.34 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • To characterize $\gamma$-glutamyltranspeptidase ($\gamma$-GTP or ggt; EC 2. 3. 2. 2.) gene of Bacillus subtilis BS 62, the $\gamma$-GTP gene of BS 62 was prepared from PCR products amplified with the chromosomal DNA. The $\gamma$-GTP gene of about 2.5 kb was sequenced, and its homology was compared with the other ggt genes which were reported previously. The base sequence of the gene appeared to have an open reading frame of 1,758 bp encoding a protein of 62,175 Da. The coding region was flanked by putative ribosome binding site - AGGAGG of 7th to 12th upstream - and the stem-loof sequence was followed by transcription terminator codon. Homology of the amino acid residues sequence consisting of 587 amino acid residues was found as 98% with Bacillus subtilis gene (BSU49358), 97.4% with that of Bacillus subtilis KX 102, 37% with Pseudomonas sp. A14 (S63255) and 38% with Streptomyces avermitils (AP005028).

  • PDF

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

MicroRNA biogenesis and function in higher plants

  • Jung, Jae-Hoon;Seo, Pil Joon;Park, Chung-Mo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.111-126
    • /
    • 2009
  • MicroRNAs (miRNAs) are endogenous, non-coding, small RNA molecules consisting of 21-24 nucleotides (nts) that regulate target genes at the posttranscriptional level in plants and animals. In plants, miRNAs negatively regulate target mRNAs containing a highly complementary sequence by either mRNA cleavage or translational repression. MiRNAs are processed from single-stranded precursors containing stem-loop structures by a Dicer-like enzyme and are loaded into silencing complexes, where they act on target mRNAs. Although plant miRNAs were first reported in Arabidopsis 10 years later than animal miRNAs, numerous miRNAs have since been identified from various land plants ranging from mosses to flowering plants, and their roles in diverse aspects of plant developmental processes have been characterized. Furthermore, most of the annotated plant miRNAs are evolutionarily conserved in various plants. In particular, recent functional studies using Arabidopsis mutants have contributed a great deal of information towards establishing a framework for understanding miRNA biogenesis and functional roles. Extensive appraisal of miRNA-directed regulation during a wide array of plant development and plant responses to environmental conditions has confirmed the versatile roles of miRNAs as a key component of plant molecular biology.

Techniques for Evaluation of LAMP Amplicons and their Applications in Molecular Biology

  • Esmatabadi, Mohammad javad Dehghan;Bozorgmehr, Ali;zadeh, Hesam Motaleb;Bodaghabadi, Narges;Farhangi, Baharak;Babashah, Sadegh;Sadeghizadeh, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7409-7414
    • /
    • 2015
  • Loop-mediated isothermal amplification (LAMP) developed by Notomi et al. (2000) has made it possible to amplify DNA with high specificity, efficiency and rapidity under isothermal conditions. The ultimate products of LAMP are stem-loop structures with several inverted repeats of the target sequence and cauliflower-like patterns with multiple loops shaped by annealing between every other inverted repeats of the amplified target in the similar strand. Because the amplification process in LAMP is achieved by using four to six distinct primers, it is expected to amplify the target region with high selectivity. However, evaluation of reaction accuracy or quantitative inspection make it necessary to append other procedures to scrutinize the amplified products. Hitherto, various techniques such as turbidity assessment in the reaction vessel, post-reaction agarose gel electrophoresis, use of intercalating fluorescent dyes, real-time turbidimetry, addition of cationic polymers to the reaction mixture, polyacrylamide gel-based microchambers, lateral flow dipsticks, fluorescence resonance energy transfer (FRET), enzyme-linked immunosorbent assays and nanoparticle-based colorimetric tests have been utilized for this purpose. In this paper, we reviewed the best-known techniques for evaluation of LAMP amplicons and their applications in molecular biology beside their advantages and deficiencies. Regarding the properties of each technique, the development of innovative prompt, cost-effective and precise molecular detection methods for application in the broad field of cancer research may be feasible.

Symptom Determinant as RNA3 of Lily Isolates of Cucumber mosaic virus on Zucchini Squash

  • Cho, Seung-Kook;Ahn, Hong-Il;Kim, Min-Jea;Choi, Jang-Kyung;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.212-219
    • /
    • 2004
  • Three isolates of Cucumber mosaic virus (CMV) from lily plants showing mosaic and distortion symptoms were detected by reverse-transcriptase polymerase chain reaction (RT-PCR) using primers specific to Cucumovirus genus namely, LK-CMV, LK4-CMV, and LKS-CMV. Restriction enzymes patterns of the RT-PCR products revealed that the lily isolates belonged to subgroup IA of CMV. In terms of biological properties, the lily isolates have highly similar but distinct pathogenicity as reported in other lily strains and ordinary strains of CMV. To characterize the molecular properties, cDNAs containing coat protein (CP) gene and 3' non-coding region (NCR) of RNA3 for the isolates were cloned and their nucleotide sequences were determined. The CP similarity (218 amino acids) was highly homologous (>97%) with that of subgroup I CMV strains. However, an additional 20-nulcleotide long segment was only present in 3' NCR of lily isolates, which form an additional stem-loop RNA structure. By using chimeric construct exchange cDNA containing 3'NCR of LK-CMV into the full-length cDNA clone of RNA3 of Fny-CMV, this additional segment may prove to be significant in the identification and fitness of the virus in lily plants. The pathology of zucchini squash infected by F1F2L3-CMV, a pseudorecombinant virus was showed to change drastically the severe mosaic and stunting symptom into a mild chlorotic spot on systemic leave, compared with Fny-CMV. To delimit the sequence of RNA3 affected the pathology, various RNA3 chimeras were constructed between two strains of CMV. The symptom determinants of F1F2L3-CMV were mapped to the positions amino acid 234, 239, and 250 in 3a movement protein (MP). RNA3 chimeras changed the sequences encoding three amino acids were resulted in alteration of systemic symptom.

Genomic Analysis of miR-21-3p and Expression Pattern with Target Gene in Olive Flounder

  • Jo, Ara;Lee, Hee-Eun;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.15 no.3
    • /
    • pp.98-107
    • /
    • 2017
  • MicroRNAs (miRNAs) act as regulators of gene expression by binding to the 3' untranslated region (UTR) of target genes. They perform important biological functions in the various species. Among many miRNAs, miR-21-3p is known to serve vital functions in development and apoptosis in olive flounder. Using genomic and bioinformatic tools, evolutionary conservation of miR-21-3p was examined in various species, and expression pattern was analyzed in olive flounder. Conserved sequences (5'-CAGUCG-3') in numerous species were detected through the stem-loop structure of miR-21-3p. Thus, we analyzed target genes of miR-21-3p. Among them, 3' UTR region of PPIL2 gene indicated the highest binding affinity with miR-21-3p based on the minimum free energy value. The PPIL2 gene showed high expression levels in testis tissue of the olive flounder, whereas miR-21-3p showed rather ubiquitous expression patterns except in testis tissue, indicating that miR-21-3p seems to control the PPIL2 gene expression in a complementary repression manner in various tissues of olive flounder. Taken together, this current study contributes to infer the target gene candidates for the miR-21-3p using bioinformatics tools. Furthermore, our data offers important information on the relationship between miR-21-3p and target gene for further functional study.

Cis-acting Elements in the 3' Region of Potato virus X are Required for Host Protein Binding

  • Kwon, Sun-Jung;Kim, Kook-Hyung;Hemenway Cynthia
    • The Plant Pathology Journal
    • /
    • v.22 no.2
    • /
    • pp.139-146
    • /
    • 2006
  • The 3' region of Potato virus X (PVX) has the 74 nt 3'-nontranslated region (NTR) that is conserved among all potexviruses and contains several cis-acting elements for minus-strand and plus-strand RNA accumulation. Three stem-loop structures (SL1-SL3), especially formation of SL3 and U-rich sequence of SL2, and near upstream elements in the 3' NTR were previously demonstrated as important cis-acting elements. To Investigate the binding of these cis-acting elements within 3' end with host protein, we used the electrophoretic mobility shift assays (EMSA) and UV-cross linking analysis. The EMSA with cellular extracts from tobacco and RNA transcripts corresponding to the 150 nt of the 3' end of PVX RNA showed that the 3' end of PVX formed complexes with cellular proteins. The specificity of protein binding was confirmed through competition assay by using with 50-fold excess of specific and non-specific probes. We also conducted EMSA with RNAs containing various mutants on those cis-acting elements (${\Delta}10$10, SL3B, SL2A and ${\Delta}21$; J Mol Biol 326, 701-720) required for efficient PVX RNA accumulation. These analyses supported that these cis-acting elements are required for interaction with host protein(s). UV-cross linking analysis revealed that at least three major host proteins of about 28, 32, and 42 kDa in mass bound to these cis-elements. These results indicate that cis-acting elements from 3' end which are important for minus and plus-strand RNA accumulation are also required for host protein binding.