• Title/Summary/Keyword: Stem-cell therapy

Search Result 418, Processing Time 0.026 seconds

The Effect of Genetically Modified Lactobacillus plantarum Carrying Bone Morphogenetic Protein 2 Gene on an Ovariectomized Rat

  • Jin, Eun-Sun;Kim, Ji Yeon;Yang, Jung-Mo;Kim, Jun-Sub;Min, JoongKee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Moon, Gi-Seong;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.204-214
    • /
    • 2022
  • Objective : Osteoporosis result from age-related decline in the number of osteoblast progenitors in the bone marrow. Probiotics have beneficial effects on the host, when administered in appropriate amounts. This study investigated the effects of probiotics expressing specific genes, especially the effects of genetically modified bone morphogenetic protein (BMP)-2-expressing Lactobacillus plantarum CJNU 3003 (LP) on ovariectomized rats. Methods : Twenty-eight female Wistar rats (250-300 g, 12 weeks old) were divided into four groups : the sham (control), the ovariectomy (OVX)-induced osteoporosis group (OVX), the OVX and LP (OVX/LP), OVX and genetically modified BMP-2-expressing LP (OVX/LP with BMP) groups. The three groups underwent bilateral OVX and two of these groups were administered two different types of LP via oral gavage daily. At 16 weeks post-OVX, blood was collected from the heart and the bilateral tibiae were extracted and were scanned by ex-vivo micro-computed tomography and stained with hematoxylin-and-eosin (H&E) and Masson's trichrome stain for pathological assessment. The serum levels of osteocalcin (OC), rat C-telopeptide of type I collagen (CTX-I), BMP-2, and receptor activator of nuclear factor-ĸB ligand (RANKL) were measured. Results : The 3D-micro-computed tomography images showed that the trabecular structure in the OVX/LP with BMP group was maintained compared with OVX and OVX/LP groups. No significant differences were detected in trabecular thickness (Tb.Th) between control and OVX/LP with BMP groups (p>0.05). Furthermore, a tendency toward increased BMD, trabecular bone volume, Tb.Th, and trabecular number and decreased trabecular separation was found in rats in the OVX/LP with BMP groups when compared with the OVX and OVX/LP groups (p>0.05). The H&E and Masson's trichrome stained sections showed a thicker trabecular bone in the OVX/LP with BMP group compared with the OVX and OVX/LP groups. There was no difference in serum levels of OC, CTX and RANKL control and OVX/LP with BMP groups (p>0.05). In contrast, significant differences were found in OC and CTX-1 levels between the OVX and OVX/LP with BMP groups (p<0.05). Conclusion : Our results showed that the expression of genetically modified BMP-2 showed inhibition effect for bone loss in a rat model of osteoporosis.

Current Status and Future Strategies to Treat Spinal Cord Injury with Adult Stem Cells

  • Jeong, Seong Kyun;Choi, Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Spinal cord injury (SCI) is one of the most devastating conditions and many SCI patients suffer neurological sequelae. Stem cell therapies are expected to be beneficial for many patients with central nervous system injuries, including SCI. Adult stem cells (ASCs) are not associated with the risks which embryonic stem cells have such as malignant transformation, or ethical problems, and can be obtained relatively easily. Consequently, many researchers are currently studying the effects of ASCs in clinical trials. The environment of transplanted cells applied in the injured spinal cord differs between the phases of SCI; therefore, many researchers have investigated these phases to determine the optimal time window for stem cell therapy in animals. In addition, the results of clinical trials should be evaluated according to the phase in which stem cells are transplanted. In general, the subacute phase is considered to be optimal for stem cell transplantation. Among various candidates of transplantable ASCs, mesenchymal stem cells (MSCs) are most widely studied due to their clinical safety. MSCs are also less immunogenic than neural stem/progenitor cells and consequently immunosuppressants are rarely required. Attempts have been made to enhance the effects of stem cells using scaffolds, trophic factors, cytokines, and other drugs in animal and/or human clinical studies. Over the past decade, several clinical trials have suggested that transplantation of MSCs into the injured spinal cord elicits therapeutic effects on SCI and is safe; however, the clinical effects are limited at present. Therefore, new therapeutic agents, such as genetically enhanced stem cells which effectively secrete neurotrophic factors or cytokines, must be developed based on the safety of pure MSCs.

Melatonin Protects Chronic Kidney Disease Mesenchymal Stem/Stromal Cells against Accumulation of Methylglyoxal via Modulation of Hexokinase-2 Expression

  • Go, Gyeongyun;Yoon, Yeo Min;Yoon, Sungtae;Lee, Gaeun;Lim, Ji Ho;Han, Su-Yeon;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • Treatment options for patients with chronic kidney disease (CKD) are currently limited; therefore, there has been significant interest in applying mesenchymal stem/stromal cell (MSC)-based therapy to treat CKD. However, MSCs harvested from CKD patients tend to show diminished viability and proliferation due to sustained exposure to uremic toxins in the CKD environment, which limits their utility for cell therapy. The application of melatonin has been demonstrated to improve the therapeutic efficacy of MSCs derived from and engrafted to tissues in patients suffering from CKD, although the underlying biological mechanism has not been elucidated. In this study, we observed overexpression of hexokinase-2 (HK2) in serum samples of CKD patients and MSCs harvested from an adenine-fed CKD mouse model (CKD-mMSCs). HK2 upregulation led to increased production levels of methylglyoxal (MG), a toxic metabolic intermediate of abnormal glycolytic processes. The overabundance of HK2 and MG was associated with impaired mitochondrial function and low cell proliferation in CKD-mMSCs. Melatonin treatment inhibited the increases in HK2 and MG levels, and further improved mitochondrial function, glycolytic metabolism, and cell proliferation. Our findings suggest that identifying and characterizing metabolic regulators such as HK2 in CKD may improve the efficacy of MSCs for treating CKD and other kidney disorders.

Evaluation of the periodontal regenerative properties of patterned human periodontal ligament stem cell sheets

  • Kim, Joong-Hyun;Ko, Seok-Yeong;Lee, Justin Ho;Kim, Deok-Ho;Yun, Jeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.6
    • /
    • pp.402-415
    • /
    • 2017
  • Purpose: The aim of this study was to determine the effects of patterned human periodontal ligament stem cell (hPDLSC) sheets fabricated using a thermoresponsive substratum. Methods: In this study, we fabricated patterned hPDLSC sheets using nanotopographical cues to modulate the alignment of the cell sheet. Results: The hPDLSCs showed rapid monolayer formation on various surface pattern widths. Compared to cell sheets grown on flat surfaces, there were no significant differences in cell attachment and growth on the nanopatterned substratum. However, the patterned hPDLSC sheets showed higher periodontal ligamentogenesis-related gene expression in early stages than the unpatterned cell sheets. Conclusions: This experiment confirmed that patterned cell sheets provide flexibility in designing hPDLSC sheets, and that these stem cell sheets may be candidates for application in periodontal regenerative therapy.

The convergence effect of medical industry through stem cell implant treatment (줄기 세포 이식 치료를 통한 의료 산업적 융합효과)

  • Lee, Tae-Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.2
    • /
    • pp.61-65
    • /
    • 2018
  • Our experiment studied that grafted stem cells reduced behavioral deficiency in rodent animal models of clip compressive surgery inducing spinal cord infarction. Our research proved the effect of embryonic stem cells to the spinal cord infarction caused by compressing T9-10 with an aneurysm clip, focusing the application of grafted stem cells for reduction of infarction and regeneration of spinal cord nervous injury. Therefore, our research suggests manifest results that implantation of mouse embryonic stem cell could show behavioral improvement after severe spinal cord damage. Therefore, mouse embryonic stem cell (mESC) could be useful application for the method in neurological injury. Conclusively, stem cell implant therapy may enhance the effectiveness of stem cell implant for central nervous system injury.

The effectiveness of ANC's number increasing by using Oriental Medicine Music Therapy which was applied to blood cancer patients (혈액암 환자(患者)에게 실행한 한방음악치료(韓方音樂治療) 요법이 백혈구 내(內) ANC(절대호중구수)수치 증가에 미치는 영향)

  • Lee, Seung-Hyun;Park, Mi-Ra;An, Ji-Won;Baik, You-Sang
    • Journal of Korean Medical classics
    • /
    • v.18 no.2 s.29
    • /
    • pp.190-204
    • /
    • 2005
  • The purpose of this research is to discover changes of WBC and ANC numbers before and after applying Oriental medicine therapy to blood cancer patients. After that, appropriate music therapy method was well planned and carried for patients. Demonstration and music were conducted according to Ohaeng theory. The oriental music therapy was conducted three hours everyday by listening to music and we made patients participate in playing the instrument for one hour in two times a week. The result was verified in three ways by checking and comparing numbers of WBC, ratio of ANC and New Trophil before and after the experiment. In addition to that verification, we analyzed patients' survey and their response after treatment. The result was that WBC and ANC were efficient as p=0.0419, p=0.0262 each and the ratio of New trophil was not efficient in p=0.999, but partially increased.

  • PDF

Adenosine A3 Receptor Mediates ERK1/2- and JNK-Dependent TNF-α Production in Toxoplasma gondii-Infected HTR8/SVneo Human Extravillous Trophoblast Cells

  • Ye, Wei;Sun, Jinhui;Li, Chunchao;Fan, Xuanyan;Gong, Fan;Huang, Xinqia;Deng, Mingzhu;Chu, Jia-Qi
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.4
    • /
    • pp.393-402
    • /
    • 2020
  • Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-α production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-α production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-α, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-α secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-α secretion in T. gondii-infected HTR8/SVneo cells.