• 제목/요약/키워드: Stem cells from human exfoliated deciduous teeth (SHED)

검색결과 4건 처리시간 0.017초

Tracking of Stem Cells from Human Exfoliated Deciduous Teeth Labeled with Molday ION Rhodamine-B during Periodontal Bone Regeneration in Rats

  • Nan Zhang;Li Xu;Hao Song;Chunqing Bu;Jie Kang;Chuanchen Zhang;Xiaofei Yang;Fabin Han
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.93-107
    • /
    • 2023
  • Background and Objectives: Chronic periodontitis can lead to alveolar bone resorption and eventually tooth loss. Stem cells from exfoliated deciduous teeth (SHED) are appropriate bone regeneration seed cells. To track the survival, migration, and differentiation of the transplanted SHED, we used super paramagnetic iron oxide particles (SPIO) Molday ION Rhodamine-B (MIRB) to label and monitor the transplanted cells while repairing periodontal bone defects. Methods and Results: We determined an appropriate dose of MIRB for labeling SHED by examining the growth and osteogenic differentiation of labeled SHED. Finally, SHED was labeled with 25 ㎍ Fe/ml MIRB before being transplanted into rats. Magnetic resonance imaging was used to track SHED survival and migration in vivo due to a low-intensity signal artifact caused by MIRB. HE and immunohistochemical analyses revealed that both MIRB-labeled and unlabeled SHED could promote periodontal bone regeneration. The colocalization of hNUC and MIRB demonstrated that SHED transplanted into rats could survive in vivo. Furthermore, some MIRB-positive cells expressed the osteoblast and osteocyte markers OCN and DMP1, respectively. Enzyme-linked immunosorbent assay revealed that SHED could secrete protein factors, such as IGF-1, OCN, ALP, IL-4, VEGF, and bFGF, which promote bone regeneration. Immunofluorescence staining revealed that the transplanted SHED was surrounded by a large number of host-derived Runx2- and Col II-positive cells that played important roles in the bone healing process. Conclusions: SHED could promote periodontal bone regeneration in rats, and the survival of SHED could be tracked in vivo by labeling them with MIRB. SHED are likely to promote bone healing through both direct differentiation and paracrine mechanisms.

Stem cells from human exfoliated deciduous teeth attenuate trigeminal neuralgia in rats by inhibiting endoplasmic reticulum stress

  • Yang, Zhijie;Wang, Chun;Zhang, Xia;Li, Jing;Zhang, Ziqi;Tan, Zhao;Wang, Junyi;Zhang, Junyang;Bai, Xiaofeng
    • The Korean Journal of Pain
    • /
    • 제35권4호
    • /
    • pp.383-390
    • /
    • 2022
  • Background: The treatment of trigeminal neuralgia remains a challenging issue. Stem cells from human exfoliated deciduous teeth (SHED) provide optimized therapy for chronic pain. This study aimed to investigate the mechanisms underlying the attenuation of trigeminal neuralgia by SHED. Methods: Trigeminal neuralgia was induced by chronic constriction injury of the infraorbital nerve. The mechanical threshold was assessed after model establishment and local SHED transplantation. Endoplasmic reticulum (ER) morphology and Caspase12 expression in trigeminal ganglion (TG) was evaluated as well. BiP expression was observed in PC12 cells induced by tunicamycin. Results: The local transplantation of SHED could relieve trigeminal neuralgia in rats. Further, transmission electron microscopy revealed swelling of the ER in rats with trigeminal neuralgia. Moreover, SHED inhibited the tunicamycin-induced up-regulated expression of BiP mRNA and protein in vitro. Additionally, SHED decreased the up-regulated expression of Caspase12 mRNA and protein in the TG of rats caused by trigeminal neuralgia after chronic constriction injury of the infraorbital nerve mode. Conclusions: This findings demonstrated that SHED could alleviate pain by relieving ER stress which provide potential basic evidence for clinical pain treatment.

Effect of Blood Contamination on Vickers Microhardness and Surface Morphology of Mineral Trioxide Aggregate

  • Jaehyun Seung;Seong-Jin Shin;Byounghwa Kim;Ji-Myung Bae;Jiyoung Ra
    • 대한소아치과학회지
    • /
    • 제51권2호
    • /
    • pp.165-175
    • /
    • 2024
  • This study aimed to investigate the effects of blood contamination on the Vickers hardness and the surface morphology of premixed MTA and compare them with the effects on conventional MTA. The Vickers microhardness of Endocem MTA Premixed Regular (EP) and ProRoot MTA (PM) was assessed after immersion in fetal bovine serum (FBS) and saline. Stem cells from human exfoliated deciduous teeth (SHED) were seeded on MTA after immersion in FBS, saline, and deionized water (DW). Cell adhesion patterns and surface morphology were visualized via scanning electron microscopy (SEM). The surface microhardness of EP and PM in FBS was lower than in saline. However, short-term exposure of PM to FBS did not reduce the microhardness compared to saline. Angular crystals formed in water, while rounded crystals with more air voids appeared in FBS. Favorable SHED attachment occurred in all groups. Overall, the surface hardness of EP and PM decreased after FBS exposure, although PM was less influenced. We suggest minimizing the amount of bleeding when using MTA clinically; nevertheless, PM remains an option with more expected blood contamination than EP. In summary, exposure to FBS decreased mechanical performance but allowed cell adhesion for both MTAs, with PM being more resistant to these changes.

유치 줄기세포에 대한 다양한 규산칼슘계 재료의 세포독성 (Cytotoxicity of Various Calcium Silicate-based Materials with Stem Cells from Deciduous Teeth)

  • 윤지혜;유용욱;안은숙;이준;안소연
    • 대한소아치과학회지
    • /
    • 제46권1호
    • /
    • pp.85-92
    • /
    • 2019
  • 이 연구의 목적은 유치 줄기세포에 대해 다양한 Calcium silicate-based material (CSM)의 세포독성을 비교하고 평가하는 것이다. Retro $MTA^{(R)}$ (RM), $EZ-Seal^{TM}$ (EZ), ENDOCEM $Zr^{(R)}$ (EN)의 powder를 세포 배지를 이용하여 용출시키고 filtering 하였다. 유치 줄기세포가 다양한 농도의 용출액 하 배양되었다. MTS assay를 통해 CSM 용출액이 세포 증식에 미치는 영향을 분석하였고, Flow cytometry analysis를 통해 세포 표현형의 변화 여부를 관찰하였다. 10% 농도의 용출액에서 배양된 유치 줄기세포의 흡광도 값은 RM > EN > EZ 순이었다(p = 0.0439). 그러나 유치 줄기세포는 재료에 관계없이 간엽줄기세포의 표현형을 유지했다. 세 종류의 CSM이 줄기세포 marker를 변형시키진 않았지만, EZ가 RM과 EN보다 세포적합성이 낮음을 알 수 있었다.