• 제목/요약/키워드: Stem cell differentiation

검색결과 695건 처리시간 0.041초

줄기세포의 분화능의 기원에 따른 비교 - 견봉하 점액낭, 골수, 탯줄 혈액 - (Differential Potential of Stem Cells Following Their Origin - Subacromial Bursa, Bone Marrow, Umbilical Cord Blood -)

  • 심성우;문영래;강정훈
    • Clinics in Shoulder and Elbow
    • /
    • 제15권2호
    • /
    • pp.65-72
    • /
    • 2012
  • 목적: 세가지 기원의 줄기 세포 분화능과 면역표현형을 평가하고자 하였다. 대상 및 방법: 견봉하 점액낭과 골수, 탯줄 혈액 세 개의 군에서 세포를 채취하였다. 견봉하 점액낭과 골수는 견관절 수술 환자군에게 임상적 동의 하에 수술중 채취하였다. 각각의 채취된 세포 및 탯줄 혈액에 대하여 계대 배양을 시행하여 신경 분화군, 지방 분화군, 골 분화군을 평가하였으며 세포 표면 항체를 밝히기 위해 유동세포분석법을 이용하였다. 결과: 견봉하 점액낭 유래 세포에서는 신경분화와 지방 분화는 8예 모두 (100%)에서, 골분화는 8례 중 5예 (62.5%)에서 성공할 수 있었으며 골수 유래 세포의 경우 신경 및 지방 분화 유도한 6례 및 5예 모두 (100%) 분화에 성공하였으나 골분화 유도는 5예 중 4예 (80%)에서 얻을 수 있었다. 반면 탯줄 유래 세포 분화 연구의 경우 신경 분화 유도 67례 중 65예 (97%)에서 지방 분화 연구 54예 중 29예 (53.7%)에서 골 분화 연구 57예 중 39예 (68.4%)에서 성공할 수 있었다. 결론: 탯줄 유래 줄기세포의 분화능과 비교하였을 때 견봉하 점액낭 및 골수 유래 줄기세포의 분화능이 우수함을 알 수 있으며 이는 향후 세포 치료에 있어서 안정성 있는 치료 제공자가 될 수 있을 것으로 보이며 향후 생체 실험 연구의 참고 자료로서도 가치가 있을 것으로 보인다.

Effect of Extrinsic Factors on Differentiated Cardiomyocyte-like Cells from Human Embryonic Stem Cells

  • Gil, Chang-Hyun;Jang, Jae-Woo;Lee, Won-Young;Park, Ze-Won;Lee, Jae-Ho;Chung, Sun-Hwa;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • 제33권4호
    • /
    • pp.263-271
    • /
    • 2009
  • Cardiovascular diseases (CVDs) are one of the most cause of death around the world and fields of interest for cardiac stem cells. Also, current use of terminally differentiated adult cardiomyocytes for CVDs has limited regenerative capacity therefore any significant cell loss may result in the development of progressive heart failure. Human embryonic stem cells (hESCs) derived from blastocyst-stage embryos spontaneously have ability to differentiate via embryo-like aggregates (endoderm, ectoderm and mesoderm) in vitro into various cell types including cardiomyocyte. However, most effective molecule or optimized condition which can induce cardiac differentiation of hESCs is rarely studied. In this study, we developed both spontaneous and inductive cardiomyocyte-like cells differentiation from hESCs by treatment of induced-factors, 5-azacytidine, BMP-4 and cardiogenol C. On the one hand, spontaneous and inductive cardiomyocyte-like cells showed that cardiac markers are expressed for further analysis by RT-PCR and immunocytochemistry. Interestingly, BMP-4 greatly improved homogeneous population of the cardiomyocyte-like cells from hESCs CHA15 and H09. In conclusion, we verified that spontaneously differentiated cells showed cardiac specific markers which characterize cardiac cells, treated extrinsic factors can manage cellular signals and found that hESCs can undergo differentiation into cardiomyocytes better than spontaneous group. This finding offers an insight into the inductive factor of differentiated cardiomyocytes and provides some helpful information that may offer the potential of cardiomyocytes derived from hESCs using extrinsic factors.

지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구 (A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL)

  • 이의석;장현석;권종진;임재석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권2호
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: I. Effect of Neurotrophic Factors on Neural Progenitor Cells

  • Kim Eun-Yeong;Jo Hyeon-Jeong;Choe Gyeong-Hui;An So-Yeon;Jeong Gil-Saeng;Park Se-Pil;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.18-18
    • /
    • 2002
  • This study was to investigate the effect of neurotrophic factors on neural cell differentiation in vitro derived from human embryonic stem (hES, MB03) cells. For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7 - 10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron cells, neural progenitor cells were cultured in ⅰ) N2 medium (without bFGF), ⅱ) N2 supplemented with brain derived neurotrophic factor (BDNF, 5ng/㎖) or ⅲ) N2 supplemented with platelet derived growth factor-bb (PDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

Expression of HERV-HX2 in Cancer Cells and Human Embryonic Stem Cells

  • Jung, Hyun-Min;Choi, Seoung-Jun;Kim, Se-Hee;Moon, Sung-Hwan;Yoo, Jung-Ki;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • 제32권2호
    • /
    • pp.105-110
    • /
    • 2008
  • The endogenous retrovirus-like elements (HERVs) found on several human chromosomes are somehow involved in gene regulation, especially during the transcription level. HERV-H, located on chromosome Xp22, may regulate gastrin-releasing peptide receptor (GRPR) in connection with diverse diseases. By suppression subtractive hybridization screen on SV40-immortalized lung fibroblast (WI-38 VA-13), we discovered that expression of HERV-HX2, a clustered HERV-H sequence on chromosome X, was upregulated in immortalized lung cells, compared to that of normal cells. Expression of HERV-HX2 was then analyzed in various cell lines, including normal somatic cells, cancer cells, SV40-immortalized cells, and undifferentiated and differentiated human embryonic stem cells. Expression of HERV-HX2 was specifically upregulated in continuously-dividing cells, such as cancer cells and SV40-immortalized cells. Especially, HERV-HX2 in HeLa cells was highly upregulated during the S phase of the cell cycle. Similar results were obtained in hES cells, in which undifferentiated cells expressed more HERV-HX2 mRNA than differentiated hES cells, including neural precursor and endothelial progenitor cells. Taken together, our results suggest that HERV-HX2 is upregulated in cancer cells and undifferentiated hES cells, whereas downregulated as differentiation progress. Therefore, we assume that HERV-HX2 may playa role on proliferation of cancer cells as well as differentiation of hES cells in the transcriptional level.

Statistical Analysis about Ability to Mouse Embryonic Stem Cell Differentiation using cDNA Microarray

  • Choi, Hang-Suk;Kim, Sung-Ju;Lee, Young-Jin;Cha, Kyung-Joon;Kim, Chul-Geun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.951-958
    • /
    • 2005
  • As a foundation study of stem cell applied research, it is necessary to identify the large gene expression through cDNA microarray to understand principles of the level of molecular about cell function. In this paper, we investigated the gene expression through the K-means clustering method and path analysis with genes related to pluripoteny and differentiation in an mouse early stage embryonic development process and embryonic stem cell differentiation. We find a few biological phenomenon through this study. Also, we realize that this process provides functional relationship of unknown genes.

  • PDF

Limited in vitro differentiation of porcine induced pluripotent stem cells into endothelial cells

  • In-Won Lee;Hyeon-Geun Lee;Dae-Ky Moon;Yeon-Ji Lee;Bo-Gyeong Seo;Sang-Ki Baek;Tae-Suk Kim;Cheol Hwangbo;Joon-Hee Lee
    • 한국동물생명공학회지
    • /
    • 제38권3호
    • /
    • pp.109-120
    • /
    • 2023
  • Background: Pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer the immense therapeutic potential in stem cell-based therapy of degenerative disorders. However, clinical trials of human ESCs cause heavy ethical concerns. With the derivation of iPSCs established by reprogramming from adult somatic cells through the transgenic expression of transcription factors, this problems would be able to overcome. In the present study, we tried to differentiate porcine iPSCs (piPSCs) into endothelial cells (ECs) for stem cell-based therapy of vascular diseases. Methods: piPSCs (OSKMNL) were induced to differentiation into ECs in four differentiation media (APEL-2, APEL-2 + 50 ng/mL of VEGF, EBM-2, EBM-2 + 50 ng/mL of VEGF) on cultured plates coated with matrigel® (1:40 dilution with DMEM/F-12 medium) for 8 days. Differentiation efficiency of these cells were exanimated using qRT-PCR, Immunocytochemistry, Western blotting and FACS. Results: As results, expressions of pluripotency-associated markers (OCT-3/4, SOX2 and NANOG) were higher observed in all porcine differentiated cells derived from piPSCs (OSKMNL) cultured in four differentiation media than piPSCs as the control, whereas endothelial-associated marker (CD-31) in the differentiated cells was not expressed. Conclusions: It can be seen that piPSCs (OSKMNL) were not suitable to differentiate into ECs in the four differentiation media unlike porcine epiblast stem cells (pEpiSCs). Therefore, it would be required to establish a suitable PSCs for differentiating into ECs for the treatment of cardiovascular diseases.

지방기질유래 줄기세포의 골 분화 시 성장인자의 효과 (THE EFFECT OF GROWTH FACTORS ON OSTEOGENIC DIFFERENTIATION OF ADIPOSE TISSUE-DERIVED STROMAL CELLS)

  • 김욱규;최연식;정진섭
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권4호
    • /
    • pp.327-333
    • /
    • 2006
  • Future cell-based therapies such as tissue engineering will benefit from a source of autogenous pluripotent stem cells. There are embryonic stem cells (ESC) and autologous adult stem cells, two general types of stem cells potentilally useful for these applications. But practical use of ESC is limited due to potential problems of cell regulation and ethical considerations. To get bone marrow stem cells is relatively burden to patients because of pain, anesthesia requirement. The ideal stem cells are required of such as the following advantages: easy to obtain, minimal patient discomfort and a capability of yielding enough cell numbers. Adipose autologus tissue taken from intraoral fatty pad or abdomen may represent such a source. Our study designed to demonstrate the ability of human adipose tissue-derived stromal cells (hATSC) from human abdominal adipose tissue diffentiating into osteocyte and adipocyte under culture in vitro conditions. As a result of experiment, we identified stromal cell derived adipose tissue has the multilineage potentiality under appropriate culture conditions. And the adipose stromal cells expressed several mesenchymal stem cell related antigen (CD29, CD44) reactions. Secondary, we compared the culture results of a group of hATSC stimulated with TGF-${\beta}$1, bFGF with a hATSC group without growth factors to confirm whether cytokines have a important role of the proliferation in osteogenic differentiation. The role of cytokines such as TGF-${\beta}$1, bFGF increased hATSC's osteogenic differentiation especially when TGF-${\beta}$1 and bFGF were used together. These results suggest that adipose stromal cells with growth factors could be efficiently available for cell-based bone regeneration.

Optimization of Human Embryonic Stem Cells into Differentiation of Dopaminergic Neurons in Vitro: II. Genetically Modified Human Embryonic Stem Cells Treated with RA/AA or b-FGF

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.75-75
    • /
    • 2003
  • Since the establishment of embryonic stem cell, pluripotency of the cells was known to allow differentiation of the cells into various cell types consisting whole body. Several protocols have been developed to induce expression of specific genes.. However, no precise protocol that will generate a single type of the cells from stem cells has been reported. In order to produce cells suitable for transplantion into brain of PD animal model, which arouse due to a progressive degeneration of dopaminergic neurons in midbrain, human embryonic stem cell (hESC, MB03) was transfected with cDNAs cording for tyrosine hydroxylase (TH). Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by the two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA/ascorbic acid (AA), embryoid bodies (EB, for 4days) derived from hES cells were exposed to RA (10$^{-6}$ M)/AA (50 mM) for 4 days, and were allowed to differentiate in N2 medium for 7, 14, 21, or 28 days. Exp. II) When bFGF was used, neuronal precursor cells were selected for 8 days in N2 medium after EB formation. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14, 21 or 28 days. By indirect immunocytochemical studies, proportion of cells expressing NF200 increased rapidly from 20% at 7 days to 70 % at 28 days in RA/AA-treated group, while those cells expressing NF160 decreased from 80% at 7 days to 10% at 28 days upon differentiation in N2 medium. However, in differentiation by RA/AA treatment system, there was a significant increase in proportion of neuron maturity (73%) at day 14 after N2 medium. TH#2/MB03 cells expressing TH are >90% when matured at the absence of either bDNF or TGF-$\alpha$. These results suggested that TH#2/MB03 cells could be differentiated in vitro into mature neurons by RA/AA.

  • PDF

줄기세포의 분화 결손으로 인한 노화와 암화 (Mal-differentiation of Stem Cells: Cancer and Ageing)

  • 이미옥;차혁진
    • KSBB Journal
    • /
    • 제26권3호
    • /
    • pp.183-188
    • /
    • 2011
  • Adult stem cells, which have characteristic of self-renewal and multipotency, are specialized cell types, responsible for the tissue regeneration of the damaged tissue. Recent studies suggest that stem cells senescence (or stem cells' ageing) is closely associated with the variety of ageing-related phenotypes such as tissue atrophy, degenerative diseases and onset of cancers. During ageing, declining of stem cells function and subsequently occurring mal-differentiation of stem cells would be important to understand the biological process of development of ageing-related phenotypes such as tissue degenerations and cancers. This review focuses on the DNA damage stress as a cause of senescence of stem cells and their mal differentiation, which is closely link to defect of regeneration potentials and neoplastic transformation. Understanding of molecular mechanisms governingsuch events is likely to have important implications for developing novel avenues for balancing tissue homeostasis longer period of time, further leading to 'Healthy ageing'.