• 제목/요약/키워드: Stem Cell Medium

검색결과 216건 처리시간 0.027초

Establishment of In-Vitro Culture System for Enhancing Production of Somatic Cell Nuclear Transfer (SCNT) Blastocysts with High Performance in the Colony Formation and Formation of Colonies Derived from SCNT Blastocysts in Pigs

  • Han, Na Rae;Baek, Song;Lee, Yongjin;Lee, Joohyeong;Yun, Jung Im;Lee, Eunsong;Lee, Seung Tae
    • 한국동물생명공학회지
    • /
    • 제34권2호
    • /
    • pp.130-138
    • /
    • 2019
  • Although somatic cell nuclear transfer (SCNT)-derived embryonic stem cells (ESCs) in pigs have great potential, their use is limited because the establishment efficiency of ESCs is extremely low. Accordingly, we tried to develop in-vitro culture system stimulating production of SCNT blastocysts with high performance in the colony formation and formation of colonies derived from SCNT blastocysts for enhancing production efficiency of porcine ESCs. For these, SCNT blastocysts produced in various types of embryo culture medium were cultured in different ESC culture medium and optimal culture medium was determined by comparing colony formation efficiency. As the results, ICM of porcine SCNT blastocysts produced through sequential culture of porcine SCNT embryos in the modified porcine zygote medium (PZM)-5 and the PZM-5F showed the best formation efficiency of colonies in α-MEM-based medium. In conclusion, appropriate combination of the embryo culture medium and ESC culture medium will greatly contribute to successful establishment of ESCs derived from SCNT embryos.

The use of pituitary adenylate cyclase-activating polypeptide in the pre-maturation system improves in vitro developmental competence from small follicles of porcine oocytes

  • Park, Kyu-Mi;Kim, Kyu-Jun;Jin, Minghui;Han, Yongquan;So, Kyoung-Ha;Hyun, Sang-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1844-1853
    • /
    • 2019
  • Objective: We investigated how pituitary adenylate cyclase-activating polypeptide (PACAP) affects embryonic development during pre-in vitro maturation (pre-IVM) using porcine oocytes isolated from small follicles. Methods: We divided the follicles into the experimental groups by size (SF, small follicles; MF, medium follicles) and treated with and without PACAP and cultured for 18 hours (PreSF[-]PACAP; without PACAP, Pre-SF[+]PACAP; with PACAP) before undergoing IVM. The gene expression related to extracellular matrix formation (amphiregulin, epiregulin, and hyaluronan synthase 2 [HAS2]) and apoptosis (Bcl-2-associated X [BAX], B-cell lymphoma 2, and cysteine-aspartic acid protease 3) was investigated after maturation. The impact on developmental competence was assessed by the cleavage and blastocyst rate and total cell number of blastocysts in embryos generated from parthenogenesis (PA) and in vitro fertilization (IVF). Results: Cleavage rates in the Pre-SF(+)PACAP after PA were significantly higher than SF and Pre-SF(-)PACAP (p<0.05). The cleavage rates between MF and Pre- SF(+)PACAP groups yielded no notable differences after IVF. Pre-SF(+)PACAP displayed the higher rate of blastocyst formation and greater total cell number than SF and Pre-SF(-)PACAP (p<0.05). Cumulus cells showed significant upregulation of HAS2 mRNA in the Pre-SF(+)PACAP compared to the SF (p<0.05). In comparison to other groups, the Pre-SF(+)PACAP group displayed a downregulation in mRNA expression of BAX in matured oocytes (p<0.05). Conclusion: The PACAP treatment during pre-IVM improved the developmental potential of porcine oocytes derived from SF by regulating cumulus expansion and apoptosis of oocytes.

Human Embryonic Stem Cell Transplantation in Parkinson′s Disease (PD) Animal Model: II. In Vivo Transplantation in Normal or PD Rat Brain

  • Choe Gyeong-Hui;Ju Wan-Seok;Kim Yong-Sik;Kim Eun-Yeong;Park Se-Pil;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.19-19
    • /
    • 2002
  • This study was to examine whether the in vitro differentiated neural cells derived from human embryonic stem (hES, MB03) cells can be survived and expressed tyrosin hydroxylase(TH) in grafted normal or PD rat brain. To differentiate in vitro into neural cells, embryoid bodies (EB: for 5 days, without mitogen) were formed from hES cells, neural progenitor cells(neurosphere, for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) were produced from EB, and then finally neurospheres were differentiated into mature neuron cells in N2 medium(without bFGF) for 2 weeks. In normal rat brain, neural progenitor cells or mature neuron cells (1×10/sup 7/ cells/㎖) were grafted to the striatum of normal rats. After 2 weeks, when the survival of grafted hES cells was examined by immunohistochemical analysis, the neural progenitor cell group indicated higher BrdU, NeuN+, MAP2+ and GFAP+ than mature neuron cell group in grafted sites of normal rats. This result demonstrated that the in vivo differentiation of grafted hES cells be increased simultaneously in both of neuronal and glial cell type. Also, neural progenitor cell grafted normal rats expressed more TH pattern than mature neuron cells. Based on this data, as a preliminary test, when the neural progenitor cells were grafted into the striatum of 6-hydroxydopamine lesioned PD rats, we confirmed the cell survival (by double staining of Nissl and NeuN) and TH expression. This result suggested that in vitro differentiated neural progenitor cells derived from hES cells are more usable than mature neuron cells for the neural cell grafting in animal model and those grafted cells were survived and expressed TH in normal or PD rat brain.

  • PDF

미니돼지에서 다능성 피부유래 전구세포의 추출과 이의 다배엽 세포로의 분화유도에 대한 연구 (ISOLATION OF PORCINE MULTIPOTENTIAL SKIN-DERIVED PRECURSOR CELLS AND ITS MULTILINEAGE DIFFERENTIATION)

  • 최문정;변준호;강은주;노규진;김종렬;김욱규;박봉욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권6호
    • /
    • pp.588-593
    • /
    • 2008
  • There are increasing reports regarding regeneration of the defected tissues using tissue engineering technique. In this technique, multipotential stem cells are essential. There are many potential sources of adult stem cells, such as bone marrow, umbilical cord blood, fat, muscle, dental tissues and skin. Among them, skin is highly accessible and easily obtained with a minimum of donor site complications. Moreover, skin is an abundant adult stem cell sources and has the potential for self-replication and immune privilege. In this study, we isolated skin-derived precursor cells (SKPs) from the ear of adult miniature pigs. In these SKPs, the expression of transcriptional factors, Oct-4, Sox-2, and Nanog were detected by RT-PCR. In vitro osteogenesis and adipogenesis were observed at 3 weeks after transdifferentiations as assayed by positive von Kossa and Oil-red O staining, respectively. In addition, expression of osteocalcin and osteonectin in the osteogenic differentiation medium and $PPAR{\gamma}2$ and aP2 in the adipogenic differentiation medium were detected by RT-PCR. In vitro neurogenesis of porcine SKPs was observed during 24 and 72 hours after treatment of neurogenic differentiation medium. The results of this study suggest that SKPs demonstrate the properties of pluripotence or multipotence and multi-lineage differentiation. This indicates that autogenous SKPs are a reliable and useful source of adult stem cells for regenerative medicine.

협부지방에서 성체 줄기세포의 분리와 골모 세포로의 분화 (DIFFERENTIATION OF ADULT STEM CELL DERIVED FROM BUCCAL FAT PAD INTO OSTEOBLAST)

  • 표성운;박장우;이일규;김창현
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권6호
    • /
    • pp.524-529
    • /
    • 2006
  • For the repairing of bone defect, autogenous or allogenic bone grafting remains the standard. However, these methods have numerous disadvantages including limited amount, donor site morbidity and spread of diseases. Tissue engineering technique by culturing stem cells may allow for a smart solution for this problem. Adipose tissue contains mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from buccal fat pad and differentiate them into osteoblast and are to examine the bone induction capacity. Buccal fat-derived cells (BFDC) were obtained from human buccal fat pad and cultured. BFDC were analyzed for presence of stem cell by immunofluorescent staining against CD-34, CD-105 and STRO-1. After BFDC were differentiated in osteogenic medium for three passages, their ability to differentiate into osteogenic pathway were checked by alkaline phosphatase (ALP) staining, Alizarin red staining and RT-PCR for osteocalcin (OC) gene expression. Immunofluorescent and biochemical assays demonstrated that BFDC might be a distinguished stem cells and mineralization was accompanied by increased activity or expression of ALP and OC. And calcium phosphate deposition was also detected in their extracelluar matrix. The current study supports the presence of stem cells within the buccal fat pad and the potential implications for human bone tissue engineering for maxillofacial reconstruction.

Effect of p38 inhibitor on the proliferation of chicken muscle stem cells and differentiation into muscle and fat

  • Minkyung, Ryu;Minsu, Kim;Hyun Young, Jung;Cho Hyun, Kim;Cheorun, Jo
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.295-306
    • /
    • 2023
  • Objective: Inhibiting the p38 mitogen-activated protein kinase (MAPK) signaling pathway delays differentiation and increases proliferation of muscle stem cells in most species. Here, we aimed to investigate the effect of p38 inhibitor (p38i) treatment on the proliferation and differentiation of chicken muscle stem cells. Methods: Chicken muscle stem cells were collected from the muscle tissues of Hy-line Brown chicken embryos at embryonic day 18, then isolated by the preplating method. Cells were cultured for 4 days in growth medium supplemented with dimethyl sulfoxide or 1, 10, 20 μM of p38i, then subcultured for up to 4 passages. Differentiation was induced for 3 days with differentiation medium. Each treatment was replicated 3 times. Results: The proliferation and mRNA expression of paired box 7 gene and myogenic factor 5 gene, as well as the mRNA expression of myogenic differentiation marker gene myogenin were significantly higher in p38i-treated cultures than in control (p<0.05), but immunofluorescence staining and mRNA expression of myosin heavy chain (MHC) were not significantly different between the two groups. Oil red O staining of accumulated lipid droplets in differentiated cell cultures revealed a higher lipid density in p38i-treated cultures than in control; however, the expression of the adipogenic marker gene peroxisome proliferator activated receptor gamma was not significantly different between the two groups. Conclusion: p38 inhibition in chicken muscle stem cells improves cell proliferation, but the effects on myogenic differentiation and lipid accumulation require additional analysis. Further studies are needed on the chicken p38-MAPK pathway to understand the muscle and fat development mechanism.

Effect of Parthenogenetic Mouse Embryonic Stem Cell (PmES) in the Mouse Model of Huntington′s Disease

  • 이창현;김용식;이영재;김은영;길광수;정길생;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.80-80
    • /
    • 2003
  • Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms, accompanied by marked cell death in the striatum and cortex. Stereotaxic injection of quinolinic acid (QA) into striatum results in a degeneration of GABAergic neurons and exhibits abnormal motor behaviors typical of the illness. The objective of this study was carried out to obtain basic information about whether parthenogenetic mouse embryonic stem (PmES) cells are suitable for cell replacement therapy of HD. To establish PmES cell lines, hybrid F1 (C57BL/6xCBA/N) mouse oocytes were treated with 7% ethanol for 5 min and cytochalasin-B for 4 hr to initiate spontaneous cleavage. Thus established PmES cells were induced to differentiate using bFGF (20ng/ml) followed by selection of neuronal precursor cells for 8 days in N2 medium. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days, then a final differentiation step in N2 medium for 7 days. To establish recipient animal models of HD, young adult mice (7 weeks age ICR mice) were lesioned unilaterally with a stereotaxic injection of QA (60 nM) into the striatum and the rotational behavior of the animals was tested using apomorphine (0.1mg/kg, IP) 7 days after the induction of lesion. Animals rotating more than 120 turns per hour were selected and the differentiated PmES cells (1$\times$10$^4$cells/ul) were implanted into striatum. Four weeks after the graft, immunohistochemical studies revealed the presence of cells reactive to anti-NeuN antibody. However, only a slight improvement of motor behavior was observed. By Nissl staining, cell mass resembling tumor was found at the graft site and near cortex which may explain the slight behavioral improvement. Detailed experiment on cell viability, differentiation and migration explanted in vivo is currently being studied.

  • PDF

Evaluation of Porous PLLA Scaffold for Chondrogenic Differentiation of Stem Cells

  • Jung, Hyun-Jung;Park, Kwi-Deok;Ahn, Kwang-Duk;Ahn, Dong-June;Han, Dong-Keun
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.268-268
    • /
    • 2006
  • Due to their multipotency, stem cells can differentiate into a variety of specialized cell types, such as chondrocytes, osteoblasts, myoblasts, and nerve cells. As an alternative to mature tissue cells, stem cells are of importance in tissue engineering and regenerative medicine. Since interactions between scaffold and cells play an important role in the tissue development in vitro, synthetic oligopeptides have been immobilized onto polymeric scaffolds to improve specific cell attachment and even to stimulate cell differentiation. In this study, chondrogenic differentiation of stem cells was evaluated using surface-modified PLLA scaffolds, i.e., either hydrophilic acrylic acid (AA)-grafted PLLA or RGD-immobilized one. Porous PLLA scaffolds were prepared using a gas foaming method, followed by plasma treatment and subsequent grafting of AA to introduce a hydrophilicity (PLLA-PAA). This was further processed to fix RGD peptide to make an RGD-immobilized scaffold (PLLA-PAA-RGD). Stem cells were seeded at $1{\times}10^{6}$ cells per scaffold and the cell-PLLA constructs were cultured for up to 4 weeks in the chondrogenic medium. Using these surface-modified scaffolds, adhesion, proliferation, and chondrogenic differentiation of stem cells were evaluated. The surface of PLLA scaffolds turned hydrophilic (water contact angle, 45 degrees) with both plasma treatment and AA grafting. The hydrophilicity of RGD-immobilized surface was not significantly altered. Cell proliferation rate on the either PLLA-PAA or PLLA-PAA-RGD surface was obviously improved, especially with the RGD-immobilized one as compared to the control PLLA one. Chondrogenic differentiation was clearly identified with Safranin O staining of GAG in the AA- or RGD-grafted PLLA substrates. This study demonstrated that modified polymer surfaces may provide better environment for chondrogenesis of stem cells.

  • PDF

Simian virus 40의 T항원 도입으로 수립한 지방유래줄기세포주의 효율적인 무혈청 배양법 및 무혈청 배지조성 (Composition of a Medium for Serum-free Culture of an Adipose-derived Stem Cell Line Established with a Simian Virus 40 T Antigen)

  • 김규빈;주우홍;김동완
    • 생명과학회지
    • /
    • 제24권12호
    • /
    • pp.1301-1307
    • /
    • 2014
  • 지방유래줄기세포(adipose-derived stem cell; ADSC)는 조직재생을 위한 탁월한 수단으로 인정되고 있으나 세포증식속도가 느려 ADSC의 배양용 배지에는 대게 fetal bovine serum (FBS)이 첨가된다. FBS는 세포에 다양한 영양분을 공급하지만 세포의 기능에 영향을 미칠 수 있는 미 동정 물질도 많이 함유하고 있다. FBS에 의한 예상밖의 영향과 동물유래물질의 오염을 방지하기 위해 ADSC의 무혈청 배양법에 관한 연구가 광범위하게 이루어지고 있다. 본 연구에서는 ADSC세포에 SV40의 T항원 유전자를 도입하여 증식속도를 향상시킨 ADSC-T세포주의 효율적인 무혈청 배양법을 확립하기 위해 ADSC-T의 세포증식에 미치는 아미노산복합체, 비타민 복합체 및 여러가지 영양분 혼합물(B27)의 영향을 검토하였다. 그 결과, ADSC-T세포를 DMEM/F12 무혈청 배지에 현탁하여 plate에 주입하였을 때는 증식하지 않았으며 아미노산, 비타민 및 B27 영양소복합체는 증식촉진효과를 나타내지 않았다. 그러나 ADSC-T세포를 유혈청 DMEM배지로 24시간 배양 후 DMEM/F12 무혈청 배지로 교체하여 배양했을 때는 세포가 증식하였으며 이때, 비타민 복합체와 B27 영양소복합체는 증식촉진효과를 나타내었다. 또한 Stem pro 배지를 이용하면 ADSC-T의 무혈청 부유배양이 가능한 것으로 나타났다. ADSC-T세포는 분자량 70 kDa 부근의 단백질을 다량으로 분비하였으며, 성장인자 중에서 insulin-like growth factor (IGF)와 fibroblast growth factor basic (FGF basic)는 유혈청 배양보다 무혈청 배양에서 더 많이 분비되었다.

Modification of Pluripotency and Neural Crest-Related Genes' expression in Murine Skin-Derived Precursor Cells by Leukemia Inhibitory Factor (LIF)

  • 박상규
    • International Journal of Oral Biology
    • /
    • 제37권4호
    • /
    • pp.175-180
    • /
    • 2012
  • Skin-derived precursor cells (SKPs) are multipotent, sphere-forming and embryonic neural crest-related precursor cells that can be isolated from dermis. It is known that the properties of porcine SKPs can be enhanced by leukemia inhibitory factor (LIF) which is an essential factor for the generation of embryonic stem cells in mice. In our present study, to enhance or maintain the properties of murine SKPs, LIF was added to the culture medium. SKPs were treated with 1,000 IU LIF for 72 hours after passage 3. Quantitative real time RT-PCR was then performed to quantify the expression of the pluripotent stem cell specific genes Oct4, Nanog, Klf4 and c-Myc, and the neural crest specific genes Snai2 and Ngfr. The results show that the expression of Oct4 is increased in murine SKPs by LIF treatment whereas the level of Ngfr is decreased under these conditions. Interestingly, LIF treatment reduced Nanog expression which is also important for cell proliferation in adult stem cells and for osteogenic induction in mesenchymal stem cells. These findings implicate LIF in the maintenance of stemness in SKPs through the suppression of lineage differentiation and in part through the control of cell proliferation.