• Title/Summary/Keyword: Steer-by-wire system

Search Result 19, Processing Time 0.019 seconds

Robust design of a steer-by-wire control system using QFT (QFT를 이용한 SBW 시스템의 강인 제어기 설계)

  • Kim, Seok-Woo;Kwon, Hyuk-Lyong;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.504-506
    • /
    • 1997
  • The steer-by-wire (SBW) system has nonlinear dynamics inherently. In classical approach, the controller has been designed on a linearized model which corresponds to only an operating point. In this paper, a set of linearized model that is generated at different operating ranges is replaced by a linear transfer function having parametric uncertainty. Then a design method for robust control using QFT is represented. The Kharitonov like analyses shows that the proposed controller satisfies the given robust performance specifications well.

  • PDF

Study on Vehicle Deceleration Control in School Zones by Taking Driver's Comfort into Account (스쿨 존에서 운전자의 승차감을 수반한 차량 감속 제어에 관한 연구)

  • Cho, Hyo-Seung;Kim, Hyoung-Seok;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1359-1366
    • /
    • 2010
  • Recently, many electronic control techniques for vehicles have been developed and applied. One of the technologies can be X-by-wire such as throttle-by-wire, brake-by-wire, steer-by-wire, and etc, in which most of mechanical parts are replaced into electrical wire and actuators. In this study, the effect of throttle-by-wire and brake-by-wire control systems on vehicle velocity control, especially in a school zone, are taken into consideration. The number of accidents reported in school zones is higher than that in other places. The reason for this is that many vehicle drivers do not obey speed limit regulations. Moreover, some of the students are careless while crossing the streets. Therefore, in this study, we attempt to develop a method using throttle-by-wire and brake-by-wire control systems for automatically reducing the vehicle speed such that it will be within the speed limit. First, an engine model and a transmission system model are developed for a specific vehicle model. Second, speed reduction is carried out such that the reduction follows a pre-designed cubic spline trajectory; the trajectory is determined such that rapid deceleration, which causes discomfort to the driver and passengers, can be prevented, for which a fuzzy-PID control algorithm is applied for the trajectory following control. Finally, simulation results are presented to verify the performance of the proposed speed reduction control system.

Integrated Chassis Control System with Fail Safety Using Optimum Yaw Moment Distribution (최적 요모멘트 분배 방법을 이용한 고장 안전 통합 섀시 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.315-321
    • /
    • 2014
  • This paper presents an integrated chassis control system with fail safety using optimum yaw moment distribution for a vehicle with steer-by-wire and brake-by-wire devices. The proposed system has two-level structure: upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control theory. In the lower-level controller, the control yaw moment is distributed into the tire forces of active front steering(AFS) and electronic stability control(ESC) with the weighted pseudo-inverse based control allocation(WPCA) method. By setting the variable weights in WPCA, it is possible to take the sensor/actuator failure into account. In this framework, it is necessary to optimize the variables weights in order to enhance the yaw moment distribution. For this purpose, simulation-based tuning is proposed. To show the effectiveness of the proposed method, simulations are conducted on a vehicle simulation package, CarSim.

Predictive Hybrid Redundancy using Exponential Smoothing Method for Safety Critical Systems

  • Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.126-134
    • /
    • 2008
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires (steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive hybrid redundancy that can remove most erroneous values. In addition, several numerical simulation results are given where the predictive hybrid redundancy outperforms wellknown average and median voters.

EXPERIMENTAL VALIDATION OF THE POTENTIAL FIELD LANEKEEPING SYSTEM

  • Rossetter, E.J.;Switkes, J.P.;Gerdes, J.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.95-108
    • /
    • 2004
  • Lanekeeping assistance has the potential to save thousands of lives every year by preventing accidental road departure. This paper presents experimental validation of a potential field lanekeeping assistance system with quantitative performance guarantees. The lanekeeping system is implemented on a 1997 Corvette modified for steer-by-wire capability. With no mechanical connection between the hand wheel and road wheels the lanekeeping system can add steering inputs independently from the driver. Implementation of the lanekeeping system uses a novel combination of a multi-antenna Global Positioning System (GPS) and precision road maps. Preliminary experimental data shows that this control scheme performs extremely well for driver assistance and closely matches simulation results, verifying previous theoretical guarantees for safety. These results also motivate future work which will focus on interaction with the driver.

Development of a Lane Departure Avoidance System using Vision Sensor and Active Steering Control (비전 센서 및 능동 조향 제어를 이용한 차선 이탈 방지 시스템 개발)

  • 허건수;박범찬;홍대건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.222-228
    • /
    • 2003
  • Lane departure avoidance system is one of the key technologies for the future active-safety passenger cars. The lane departure avoidance system is composed of two subsystems; lane sensing algorithm and active-steering controller. In this paper, the road image is obtained by vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active-steering controller is designed to prevent the lane departure. The developed active-steering controller can be realized by steer-by-wire actuator. The lane-sensing algorithm and active-steering controller are implemented into the steering HILS(Hardware-In-the-Loop Simulation) and their performance is evaluated with a human driver in the loop.

Development of Predictive Smoothing Voter using Exponential Smoothing Method (지수 평활법을 이용한 Predictive Smoothing Voter 개발)

  • Kim, Man-Ho;Lim, Chang-Hwy;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.34-42
    • /
    • 2006
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires(steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive smoothing voter that can filter out most erroneous values and noise. In addition, several numerical simulation results are given where the predictive smoothing voter outperforms well-known average and median voters.

Active steering Control Based on The Estimated Tire Forces (추정된 타이어 힘을 이용한 능동 조향 제어)

  • Seo, Chan-Won;Kim, Jun-Yeong;Hong, Dae-Geon;Heo, Geon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2228-2234
    • /
    • 2000
  • Steering of the vehicles on a slippery highway is a difficult task for most passenger car drivers. The steering vehicles on slippery roads tend to slide outward with less lateral forces than on nor mal roads. When the drivers notice that their vehicles on a slippery highway start to depart from the cornering lane, most of them make a sudden steering and/or braking, which in turn may induce spin-out and instability on their vehicles. In this paper, an active steering control method is proposed such that the vehicles in slippery roads are steered as if they are driven on the normal roads. In the proposed method, the estimated lateral forces acting on the steering tires are compared with the reference values and the difference is compensated by the active steering method. A fuzzy logic controller is designed for this purpose and evaluated on a steering Hardware-In-the-Loop Simulation (HILS) system. Steering performance results on the slippery curved and sinus roads demonstrate the effectiveness of the proposed controller. This method can be realized with the steer-by-wire concept and is promising as an active safety technology.

Design for System Architecture of Multiple AVPs with Fail-safe based on Dynamic Network (Fail-safe를 적용한 다수 AVP 차량 및 아키텍처 설계)

  • Woo, Hoon-Je;Kim, Jae-Hwan;Sung, Kyung-Bok;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.584-593
    • /
    • 2012
  • This paper introduces an AVP (Automated Valet Parking) system which applies an autonomous driving concept into the current PAS (Parking Assistant System). The present commercial PAS technology is limited into vehicle. It means vehicle only senses and controls by and for itself to assist the parking. Therefore, the present PAS is restricted to simple parking events. But AVP includes wider parking events and planning because it uses infra-sensor network as well as vehicle sensor. For the realization of AVP, the commercial steering system of a compact vehicle was modified into steer-by-wire structure and various sensors like LRF (Long Range Finder) and camera were installed in a parking area. And local & global server decides where and when the vehicle can go and park in the testing area after recognized the status of environment and vehicle from those sensors. GPS solution was used to validate the AVP performance. More various parking situations, vehicles and obstacles will be considered in the next research stages based on these results. And we expect this AVP solution with more intelligent vehicles can be applied in a big parking lot like a market, an amusement park, etc.