• Title/Summary/Keyword: Steels

Search Result 2,297, Processing Time 0.029 seconds

Characterization of Tribolayers and Sliding wear at High Temperature between AlCrN Coated Tool Steels and Ultra-high Strength Boron Steels

  • Choi, Byung-Young;Gu, Yoon-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • High temperature wear of AlCrN coated tool steels sliding against the ultra-high strength boron steels used for hot press forming has been studied. The sliding wear tests have been carried out using a pin-on-disc of configuration under applied normal load of 50 N for 20 min with heating the ultra-high strength boron steels up to $800^{\circ}C$. Characterizations of tribolayers formed on the contacting surfaces between the tribopairs of the AlCrN coated tool steels and the ultra-high strength boron steels have been studied. It was found on the tribolayers of the AlCrN coated tool steels that microcracking and oxides containing Fe and Cr to increase friction coefficient were formed at the early stage of sliding wear, followed by the generation of the smeared oxide layers containing Fe transferred from the tribopair to decrease friction coefficient. This may mainly contribute to very low specific wear rate of the AlCrN coated tool steels sliding against the ultra-high strength boron steels, resulting from oxideoxide contact between the tribopair.

Effect of Cooling Velocity on the Microstructures and Mechanical Properties of Si, Mn, V added HSLA Steels (Si, Mn, V이 첨가된 비조질강의 미세조직 및 기계적 성질에 미치는 냉각속도의 영향)

  • Park, Yon-Seo;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.267-274
    • /
    • 2001
  • Microalloyed steels, which substituted by conventional quenched and tempered steels, have been used in a wide variety of structural and engineering application. The main driving force for preference of MA steels is a cost reduction which can be achieved by an omission of heat treatment. In this study, low carbon martensitic MA steels in 0.18C-0.30(0.60)Si-2.00(1.80)Mn-0.05S-1.5Cr-0.05(0.10)V-0.015Ti(wt%) were investigated to know the effects of cooling method on the mechanical properties and microstructures of Si, Mn, V added microalloyed steel at different reheating temperature. Microstructure of oil quenched steels which were comprised lath martensite, auto-tempered martensite and retained austenite, had more various structure than that of air cooled steel made of mainly bainite. Therefore, oil quenched steels, which had more various microstructure, had better strength-toughness balance compare to air cooled steels. In the impact test, fracture mode of oil quenched steels, which showed good mechanical properties, were dimple, but that of air cooled steels were cleavage.

  • PDF

High Temperature Wear of STD 61 Tool Steels Sliding Against Al-9%Si Coated Steels Used for Hot Press Forming (STD 61 공구강과 상대재인 핫 프레스 가공용 Al-9%Si 코팅강의 고온 미끄럼 마모)

  • Choi, Byung-Young;Kim, Hong-Ki
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.667-674
    • /
    • 2009
  • High temperature wear of STD 61 tool steels sliding against the Al-9%Si coated steels used for hot press forming has been studied in comparison with that of the tool steels sliding against the uncoated steels. Wear tests have been performed using a pin-on-disc configuration under an applied normal load of 50N for 20 min with heating the coated and uncoated steels up to 800$^{\circ}C$. It was found on the worn surface of the STD 61 tool steels sliding against the Al-9%Si coated steels that the formation of the glazed layers containing Al transferred from the coated tribopair may contribute to a reduction of the coefficient of friction, and detachment in part occur due to delamination wear, resulting in higher specific wear rate. On the other hand the Fe-oxide wear debris entrapped on the softer surface of the uncoated steels can act as a tribosurface, leading to decreased adhesive wear of the STD 61 tool steels, resulting in a lower specific wear rate.

Cyclic behaviour and modelling of stainless-clad bimetallic steels with various clad ratios

  • Liu, Xinpei;Ban, Huiyong;Zhu, Juncheng;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.189-213
    • /
    • 2020
  • Stainless-clad (SC) bimetallic steels that are manufactured by metallurgically bonding stainless steels as cladding metal and conventional mild steels as substrate metal, are kind of advanced steel plate products. Such advanced composite steels are gaining increasingly widespread usage in a range of engineering structures and have great potential to be used extensively for large civil and building infrastructures. Unfortunately, research work on the SC bimetallic steels from material level to structural design level for the applications in structural engineering field is very limited. Therefore, the aim of this paper is to investigate the material behaviour of the SC bimetallic steels under the cyclic loading which structural steels usually could encounter in seismic scenario. A number of SC bimetallic steel coupon specimens are tested under monotonic and cyclic loadings. The experimental monotonic and cyclic stress-strain curves of the SC bimetallic steels are obtained and analysed. The effects of the clad ratio that is defined as the ratio of the thickness of cladding layer to the total thickness of SC bimetallic steel plate on the monotonic and cyclic behaviour of the SC bimetallic steels are studied. Based on the experimental observations, a cyclic constitutive model with combined hardening criterion is recommended for numerical simulation of the cyclic behaviour of the SC bimetallic steels. The parameters of the constitutive model for the SC bimetallic steels with various clad ratios are calibrated. The research outcome presented in this paper may provide essential reference for further seismic analysis of structures fabricated from the SC bimetallic steels.

Characteristics of Precipitation Hardened Extra Low Carbon Steels (석출강화형 극저탄소강의 특성에 대한 고찰)

  • Yoon, Jeong-Bong;Kim, Sung-il;Kim, In-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.609-616
    • /
    • 2008
  • Conventional bake-hardenable(BH) steels should be annealed at higher temperatures because of the addition of Ti or/and Nb which forms carbides and raises recrystallization start temperature. In this study, the development of new BH steels without Ti or Nb addition has been reviewed. The new BH steels have nearly same mechanical properties as the conventional BH steels even though it is annealed at lower temperature. The steels also show smaller deviation of the mechanical properties than that of the conventional BH steels because of the conarol of solute carbon content during steel making processes. The deviation of mechanical properties in conventional BH steels is directly dependent on the deviation of solute carbon which is greatly influenced by the amount of the carbide formers in conventional BH steels. Less alloy addition in the newly developed BH steels gives economical benefits. By taking the advantage of sulfur and/or nitrogen which scarenge in Interstitial-Free or conventional BH steels, fine manganese sulfides or nano size copper sulfides were designed to precipitate, and result in refined ferrite grains. Aluminum nitrides used as a precipitation hardening element in the developed steels were also and resull in fine and well dispersed. As a result, the developed steels with less production cost and reduced deviation of mechanical properties are under commercial production. Note that the developed BH steels are registered as a brand name of MAFE(R) and/or MAF-E(R).

Comparative Study of Beams made up of Fire Resistant Steels (내화강재 적용 단순 보부재의 고온 거동 비교 연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.111-112
    • /
    • 2017
  • Fire is very serious condition in steel based structures. Therefore, to enhance the structural stability of columns and beams in high temperatures, fire resistant steels and TMC fire resistant steels are developed from steel manufacturing companies. In this study to evaluate the structural stability and compare the resistant performance, a fire engineering design method was applied and fire resistant steels showed the better performance than other two materials.

  • PDF

A Study on the Machining Characteristics by the Internal Quality of Conecting Rod's Meterials for Trucks (트럭용 커낵팅 로드 소재의 내부 품질에 따른 절삭 특성 연구)

  • 김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.97-101
    • /
    • 1996
  • In this paper, We have studied internal quality incluiding chemical compositions, microscopic structrue and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting resistence including tensile strength value, hardeness value, impact value etcs. We have compared chip treatments of test materials. In analyzing internal quality, all of test materials have typical ferrite+pearlite structure. But, nonmetallic inclusion have oxide and sulfide inclusion in medium carbon steels, mainly sulfide inclusion is existed in S-free cutting steels. In Ca+S-free cutting steels, calcium aluminate and sulfide complex inclusion, had low-melting points, as deformation of sulfide and oxide inclusion is existed. machining characteristics, cutting resistence is maximum in Ca+S-free cutting steels, minimum in medium carbon steels. Chip treatements are excellent in S-free cutting steels, similar to the Ca+S free cutting steels and medium carbon steels.

  • PDF

Comparison of hydrogen embrittlement resistance between 2205 duplex stainless steels and type 316L austenitic stainless steels under the cathodic applied potential (음극 인가전위 하에서 type 2205과 type 316L의 수소취성 저항성)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.237-244
    • /
    • 2016
  • 2205 duplex stainless steels have been used for the construction of the marine environment, because of their excellent corrosion resistance and high strength. However, the resistance to hydrogen embrittlement (HE) may be less than that of 316L austenitic stainless steel. The reason why 316L stainless steels have better resistance to HE is associated with crystal structure (FCC, face centered cubic) and the higher stacking faults energy than 2205 duplex stainless steels. Furthermore 2205 stainless steels with or without tungsten were also examined in terms of HE. 2205 stainless steels containing tungsten is less resistible to HE. It is because dislocation tangle was formed in 2205 duplex stainless steels. Slow strain-rate tensile test (SSRT) was conducted to measure the resistance to HE under the cathodic applied potential. Hydrogen embrittlement index (HEI) was used to evaluate HE resistance through the quantitative calculation.

A Statistical Study on the Mechanical Properties of Structural Steels (구조용강재의 기계적 성질에 관한 통계적 연구)

  • 장동일;이종득;경갑수;홍성욱
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.471-478
    • /
    • 1999
  • In this study, we have Quantitatively estimated the mechanical properties of SM steels widely used in steel structures after correcting and analyzing the millsheets of the steels. From this result, in present, the mechanical properties of the steels produced in domestics have satisfied the prescribed values in Korean Standards on the whole. The mechanical properties of the steels were dependent of plate thickness and class of the steels. Also, there have been linear relations between the plate thickness and the mechanical properties of the steels. And the results of this study have shown the similar tendencies with the existing results. Because the upper limit value of yield strength are not prescribed in Korean Standards at present, it is necessary to prescribe the upper limit value of yielding ratio(or yield strength) in order to assure the deformation performance of the steels.

  • PDF

Effect of Mn Addition on Rolling Contact Fatigue of C-Base Induction Hardened Bearing Steels (C계 유도경화 베어링강의 회전접촉 피로거동에 미치는 Mn 첨가의 영향)

  • Jung, Kyung-Jo;Yoon, Kee-Bong;Choi, Byung-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.205-212
    • /
    • 1995
  • Effect of Mn addition on rolling contact fatigue of C-base induction hardened bearing steels has been investigated to develop inexpensive surface-hardened bearing steels with improved resistance to rolling contact fatigue. Fatigue tests were conducted in elasto-hydrodynamic lubricating conditions at a shaft speed of 5,000rpm, under max. Hertzian stress of $492kg/mm^2$. It was found in the C-Mn steels that effective depth of induction hardened layer and amount of retained austenite were slightly increased in comparison with those of C-base steels. finer interlamellar spacing of pearlite in the C-Mn steels was also observed using TEM. Decomposition of retained austenite during rolling contact fatigue was smaller in quantity in the C-Mn steels than C-base steels. This might be associated with enhanced mechanical stability of retained austenite with addition of Mn. Statistical analysis of fatigue life for C-Mn steels using Weibull distribution indicated that improved resistance to rolling contact fatigue was mainly attributed to transformation induced plasticity and mechanical stability of retained austenite.

  • PDF