• Title/Summary/Keyword: Steel-tube

Search Result 1,099, Processing Time 0.024 seconds

The effect of $SrSO_{4}$ on Bi2212 HTS tube ($SrSO_{4}$의 첨가량이 Bi2212 고온초전도체 튜브에 미치는 영향)

  • Jung, Seng-Ho;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.80-83
    • /
    • 2003
  • $SrSO_4$ were systematically added on Bi2212 from 0 to 10wt% to study the effect of Bi2212 superconductor tube characteristics. After mixing, the melted solution of Bi2212 and $SrSO_4$ was initially poured into the cylinder type of steel mold preheated at $550^{\circ}C$ for 30min and rotated at 1000rpm. Following that, tube was annealed at $840^{\circ}C$ for 72hrs. The tube dimension was 60 in diameter, 60mm in length and 2mm in thickness. XRD data suggests that there was no typical segregation phase related with $SrSO_4$. Well textured grain with typical 2212 phase was observed and average size was $20{\mu}m$. The measured critical current and critical current density of Bi2212 tube added by 5% $SrSO_4$ at 77K were 495A and $202A/cm^2$ respectively.

  • PDF

Experimental Study of Micro-Shock Tube Flow (Micro-Shock Tube 유동에 대한 실험적 연구)

  • Park, Jin-Ouk;Kim, Gyu-Wan;Rasel, Md. Alim Iftakhar;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.385-390
    • /
    • 2015
  • The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3mm to 6mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

An Experimental Study on Evaporative Heat Transfer Characteristics in a Small Diameter Tube (미소직경관 내 증발열전달 특성에 관한 실험적 연구)

  • Hwang, Yun-Uk;Kim, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.216-224
    • /
    • 2001
  • Experiments have been performed to investigate evaporative heat transfer characteristics of R-134a flowing in a small diameter tube. Test section was made of stainless steel tube with an inner diameter of 2.2mm and was uniformly heated by electric current which was applied to the tube wall. The local saturation temperature of refrigerant flowing in a tube is calculated from the measured local saturation pressure by using an equation of state. Inner wall temperature was calculated from measured outer wall temperature, accounting for heat generation in the tube and one dimensional heat conduction through the tube wall. Mass quality of refrigerant flowing in a tube was calculated by considering energy balance in the pre-heater and the test section. Heat flux was varied from 19 to 64kW/$m^2$, and mass flux was chanted from 380 to 570kg/$m^2$s for each heat flux condition. From this study, heat transfer in a small diameter tube is affected by heat flux as well as mass flux for a wide range of mass quality. Heat transfer coefficient in a small diameter tube is much greater than that in medium sized tubes. Test results in this study are compared with Gungor and Winterton correlation, which gives an absolute average deviation of 27%.

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (I) - Boiler Superheater Tube - (SP-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(I) - 보일러 과열기 튜브 -)

  • Baek, Seung-Se;Na, Seong-Hun;Na, Ui-Gyun;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1995-2001
    • /
    • 2001
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen(10${\times}$10${\times}$0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-lMo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600$^{\circ}C$. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decreases with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation or SP-Creep rate for 2.25Cr-lMo steel is suggested. and a good agreement between experimental and calculated data has been found.

Development of Ultrasonic Testing Method for Evaluation of Adhesive Layer of Blaster Tube (토출관 접합계면 평가를 위한 초음파 시험법 개발)

  • Kim, Y.H.;Song, S.J.;Park, J.S.;Cho, H.;Lim, S.Y.;Yun, N.G.;Park, Y.J.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.46-53
    • /
    • 2004
  • Ultrasonic testing method has been developed to evaluate flaw of adhesive layers in blast tube for the reliability of the rocket nozzle. The ultrasonic reflection from the interface between the steel sheet and the epoxy adhesive is measured with a high-frequency Pulse-echo setup in order to identify contact debonding and missing adhesive in epoxy layer between steel and FRP layers. The steel sheet is resonated by low-frequency ultrasound, and the gap size underneath the measuring location is estimated from the resonance responses. For practical application in industry an automated testing system has been developed where the proposed approach is implemented. The performance of the proposed approach has been verified by actual measurement of gap sizes from the cross-sections of cut specimens using an optical microscope.

A Parameter Study of Internally Confined Hollow Reinforced Concrete Piers (내부 구속 중공 RC 교각의 매개변수 연구)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • The hollow RC(Reinforced concrete) pier has the merit of lightweight pier compared with solid RC pier. However, the hollow RC pier shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC piers were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The chosen parameters for the study are hollow ratio, thickness of internal steel tube, intervals between vertical re-bars, numbers of horizontal re-bars, and strength of concrete. As a result of parameters study, the usage of a minimum necessary thickness of the internal steel tube is the most effective.

An Experimental Study on the combustion calorie ratio to moxibustion (애구(艾灸)의 연소(燃燒) 구간별(區間別) 열량비(熱量比)에 대(對)한 연구(硏究))

  • Kang Ki-Weon;Nam Sang-Soo;Lee Jae-Dong;Choi Do-Young;Ahn Byoung-Choul;Park Dong-Seok;Lee Yun-Ho;Choi Yong-Tae
    • Journal of Acupuncture Research
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 1998
  • In order to evaluate calorie rate of moxa-combustion(direct moxibustion=DM, indirect moxibustion with stainless steel tube=IMS, indirect moxibustion with ginger slice=IMG), calorie rate(%) in the preheating period, heating period, retaining period, and cooling period was calculated respectively to the total combustion calories in all the periods. The result are as follow: 1. Indirect moxibustion with stainless steel tube had the highest rate with the statistical significance than other groups during the preheating period, represented statistical differences between IMS group and IMG group, and also between DM group and IMS group. 2. Indirect moxibustion with ginger slice group showed the highest rate with the statistical significance and followed by DM group and IMG group during the heating period, represented statistical difference among DM, IMS, and IMG group. 3. Direct moxibustion group had the highest rate with the statistical significance than other group during the retaining period, represented statistical difference between DM group and IMG group, and also between DM group and IMS group. 4. Indirect moxibustion with stainless steel tube had the highest rate with the statistical significance than other groups during the cooling period, represented statistical differences between IMS group and IMG group, and also between IMS group and DM group.

  • PDF

Development of ultrasonic testing method for the evaluation of adhesive layer of blast tube (토출관 접합계면 평가를 위한 초음파 시험법 개발)

  • Kim, Y.H.;Song, S.J.;Park, J.S.;Cho, H.;Lim, S.Y.;Yun, N.G.;Park, Y.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.230-237
    • /
    • 2003
  • Ultrasonic testing method has been developed to evaluate adhesive layers in blast tube for the reliability of the rocket. The main objective of the present work was to find debonding and missing adhesive in epoxy layer between steel and FRP layers. In this approach, the ultrasonic reflection from the interface between the steel sheet and the epoxy adhesive is measured with a high-frequency pulse-echo setup in order to identify contact debonding and missing adhesive. Then, the steel sheet is excited to resonance by low-frequency ultrasound, and the gap size underneath the measuring location is estimated from the resonance responses. For practical application in industry an automated testing system has been developed where the proposed approach is implemented. The performance of the proposed approach has been verified by actual measurement of gap sizes from the cross-sections of cut specimens using an optical microscope.

  • PDF

Structural Behavior of Beam-to-Column Connections of Rectangular CFT Structures having Different Diaphragm Opening (콘크리트충전 각형강관구조의 다이아프램 개구부 형상에 따른 기둥-보 접합부 구조적 거동)

  • Kim, Ki Hoon;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.289-298
    • /
    • 2015
  • The steel tube of Concrete-Filled Tube(CFT) confines the concrete and the concrete restrains the buckling of the tube, The objective of this study is to investigate the influences of the opening shape of the through diaphragm in case of the rectangular CFT column-to-beam connection through the structural experiment. The experiment results are compared with analysis results obtained by using the FEM program. These results are shown that strength of the rectangular CFT column-to-beam connection have similar structural performance regardless of the opening shape if opening areas of the through diaphragm are same. Also in case the connection area/shape of the through diaphragm and the flange of H-beam are similar, it was ascertained that the bending stress occurred at the beam can be transferred to the column through the diaphragm.

Preparation and Gas Permeation Properties of Silica Membranes on Porous Stainless Steel-Tube Supports (다공성 금속 지지체에 제조된 실리카 분리막의 기체 투과 특성)

  • Lee, Hye Ryeon;Seo, Bongkuk
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.177-184
    • /
    • 2014
  • Silica membranes with high permeability were prepared using colloidal and polymeric silica sols on a porous stainless steel-tube support by a DRFF and SRFF method. Silica sols were derived with tetraethylorthosilicate (TEOS) by sol-gel method and analyzed with DLS, FE-SEM, and $N_2$ adsorption. The coating of the intermediate layer with colloidal silica sol on the stainless steel-tube support led to a denser surface morphology of the membrane along with a considerable reduction in the number of surface defect. As the polymeric silica sol enclosed the colloidal silica sol with spherical particles during the SRFF method, the separation-layer-coated silica membrane showed a denser surface than the intermediate layer. Moreover, the silica membranes showed high hydrogen gas permeability of $(6.63-9.21){\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ with low $H_2/N_2$ perm-selectivity (2.9-3.1) at room temperatures.