• 제목/요약/키워드: Steel-timber composite

검색결과 33건 처리시간 0.022초

Finite element evaluation of the strength behaviour of high-strength steel column web in transverse compression

  • Coelho, Ana M. Girao;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • 제10권5호
    • /
    • pp.385-414
    • /
    • 2010
  • In current European Standard EN 1993, the moment-rotation characteristics of beam-to-column joints made from steel with a yield stress > 460MPa are obtained from elastic design procedures. The strength of the joint basic components, such as the column web subject to local transverse compression, is thus limited to the yield resistance rather than the plastic resistance. With the recent developments of higher strength steel grades, the need for these restrictions should be revisited. However, as the strength of the steel is increased, the buckling characteristics become more significant and thus instability phenomena may govern the design. This paper summarizes a comprehensive set of finite element parametric studies pertaining to the strength behaviour of high-strength steel unstiffened I-columns in transverse compression. The paper outlines the implementation and validation of a three-dimensional finite element model and presents the relevant numerical test results. The finite element predictions are evaluated against the strength values anticipated by the EN 1993 for conventional steel columns and recommendations are made for revising the specifications.

Flexural Behavior of Laminated Wood Beams Strengthened with Novel Hybrid Composite Systems: An Experimental Study

  • Mehmet Faruk OZDEMIR;Muslum Murat MARAS;Hasan Basri YURTSEVEN
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권6호
    • /
    • pp.526-541
    • /
    • 2023
  • Wooden structures are widely used, particularly in earthquake zones, owing to their light weight, ease of application, and resistance to the external environment. In this study, we aimed to improve the mechanical properties of laminated timber beams using novel hybrid systems [carbon-fiber-reinforced polymer (CFRP) and wire rope]. Within the scope of this study, it is expected that using wood, which is an environmentally friendly and sustainable building element, will be more economical and safe than the reinforced concrete and steel elements currently used to pass through wide openings. The structural behavior of the hybrid-reinforced laminated timber beams was determined under the loading system. The experimental findings showed that the highest increase in the values of laminated beams reinforced with steel ropes was obtained with the 2N reinforcement, with a maximum load of 38 kN and a displacement of 137 mm. Thus, a load increase of 168% and displacement increase of 275% compared with the reference sample were obtained. Compared with the reference sample, a load increase of 92% and a displacement increase of 14% were obtained. Carbon fabrics placed between the layers with fiber-reinforced polymer (FRP) prevented crack development and provided significant interlayer connections. Consequently, the fabrics placed between the laminated wooden beams with the innovative reinforcement system will not disrupt the aesthetics or reduce the effect of earthquake forces, and significant reductions can be achieved in these sections.

Flexural Strength of cold-formed steel built-up composite beams with rectangular compression flanges

  • Dar, M. Adil;Subramanian, N.;Dar, Dawood A.;Dar, A.R.;Anbarasu, M.;Lim, James B.P.;Mahjoubi, Soroush
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.171-188
    • /
    • 2020
  • The past research on cold-formed steel (CFS) flexural members have proved that rectangular hollow flanged sections perform better than conventional I-sections due to their higher torsional rigidity over the later ones. However, CFS members are vulnerable to local buckling, substantially due to their thin-walled features. The use of packing, such as firmly connected timber planks, to the flanges of conventional CFS lipped I-sections can drastically improve their flexural performance as well as structural efficiency. Whilst several CFS composites have been developed so far, only limited packing materials have been tried. This paper presents a series of tests carried out on different rectangular hollow compression flanged sections with innovative packing materials. Four-point flexural tests were carried out to assess the flexural capacity, failure modes and deformed shapes of the CFS composite beam specimens. The geometric imperfections were measured and reported. The North American Specifications and Indian Standard for cold-formed steel structures were used to compare the design strengths of the experimental specimen. The test results indicate clearly that CFS rectangular 'compression' flanged composite beams perform significantly better than the conventional rectangular hollow flanged CFS sections.

Analytical, experimental and numerical study of timber-concrete composite beams for bridges

  • Molina, Julio C.;Calil, Carlito Junior;de Oliveira, Diego R.;Gomes, Nadia B.
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.103-115
    • /
    • 2019
  • In this study, the strength and stiffness (EI) of wood-concrete composite beams for bridges with T-shaped cross section were evaluated. Two types of connectors were used: connectors bonded with epoxy adhesive and connectors attached to the wood just by pre-drilling (without adhesive). The connectors consisted of common steel bars with a diameter of 12.5 mm. Initially, the strength and stiffness (EI) of the beams were analyzed by bending tests with the load applied at the third point of the beam. Subsequently, the composite beams were evaluated by numerical simulation using ANSYS software with focus on the connection system. To make the composite beams, Eucalyptus citriodora wood and medium strength concrete were used. The slip modulus K and the ultimate strength values of each type of connector were obtained by direct shear tests performed on composite specimens. The results showed that the connector glued with epoxy adhesive resulted in better strength and stiffness (EI) for the composite beams when compared to the connector fixed by pre-drilling. The differences observed were up to 10%. The strength and stiffness (EI) values obtained analytically by $M{\ddot{o}}hler^{\prime}$ model were lower than the values obtained experimentally from the bending tests, and the differences were up to 25%. The numerical simulations allowed, with reasonable approximation, the evaluation of stress distributions in the composite beams tested experimentally.

H형강과 구조용집성재의 삽입길이에 따른 접합부의 탄소성 거동 (Elasto-plastic behaviour of joint by inserting length of H-beam and structural laminated timber)

  • 김순철;양일승;문연준
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.251-259
    • /
    • 2006
  • 최근 환경문제의 대두로 친환경 재료를 사용하는 건축물에 대한 연구가 주목을 받고 있다. 특히, 북미나 일본 등지에 서는 목질구조를 이용한 4층 정도의 사무소건축이나 교외형 호텔, 학교 등의 중층 목조 건축물을 실현하기 위한 연구가 진행되고 있다. 이러한 구조물은 하부층은 RC조로 하고 상부층은 목조로 하는 하이브리드 구조형식으로 보급되고 있다. 기존의 볼트나 드리프트 핀을 목재 중에 접합구를 삽입하는 방식으로 준 내화성능의 확보나 외관상의 이점이 있으나, 하중을 전달하는 지압면적이 작어 목재의 내부로 접합장치가 파고들기 때문에 목재에 균열을 발생시키는 약점이 있다. 본 연구에서는 목질 하이브리드 구법으로서 비교적 큰 하중을 받을 수 있는 2방향 라멘접합부 개발을 목표로 새로운 모멘트저항형 접합법을 검토하고자 한다. 이러한 시스템을 구축하기 위하여 H형강을 이용한 이음접합 단순보의 휨 실험을 행하였으며, 주요한 변수는 구조용집성재와 H형강의 삽입길이(보춤의 1배, 1.5배, 2배)와 H형강 상 하 플랜지와 구조용집성재 상하면 사이의 틈새에 에폭시의 충전유무이다. 실험결과, H형강의 보춤의 2배를 확보함으로써 목재의 강도 및 강성을 충분하게 발휘할 수 있었다.

Semi-continuous beam-to-column joints at the Millennium Tower in Vienna, Austria

  • Huber, Gerald
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.159-170
    • /
    • 2001
  • The Millennium Tower is situated to the north of the center of Vienna. With a height of 202 m it is the highest building in Austria. Realization was improved by new methods. The tower is a typical example of mixed building technology, combining composite frames with a concrete core. Special attention has been paid to the moment connections between the slim floors and the column tubes resulting in a drastically reduced construction time and thin slabs. The semi-continuity has been considered in the design at ultimate and serviceability limit states.

Lightweight Floor Systems for Tall Buildings: A Comparative Analysis of Structural Material Efficiencies

  • Piyush Khairnar
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.145-152
    • /
    • 2023
  • Typical floor systems in contemporary tall buildings consist of reinforced concrete or composite metal deck over framing members and account for a majority of the structural weight of the building. The use of high-density materials, such as reinforced concrete and steel, increases the weight of floor systems, reducing the system's overall efficiency. With the introduction of high-performance materials, mainly mass timber products, and fiber-reinforced composites, in the construction industry, designers and engineers have multiple options to choose from when selecting structural materials. This paper discusses the application of mass timber and carbon fiber composites as structural materials in floor systems of tall buildings. The research focused on a comparative analysis of the structural system efficiency for five different design options for tall building floor systems. Finite Element Analysis (FEA) method was adopted to develop a simulation framework, and parametric structural models were simulated to evaluate the structural performance under specific loading conditions. Simulation results revealed the advantages of lightweight structural materials to improve system efficiency and reduce material consumption. The impact of mechanical properties of materials, loading conditions, and issues related to fire engineering and construction were briefly discussed, and future research topics were identified in conclusion.

대공간 목구조 건축의 건립 현황과 구조시스템 특성 분석 (A Study on the Construction Status and the Structural System Features of Wooden Large Space Buildings)

  • 이주나;이형훈;이승재
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.15-24
    • /
    • 2022
  • In this research, the case of modern wooden structures since 1950 with span of 30m or more was investigated and analyzed the construction status and structural planning characteristics of wooden large space architecture. As a result, wooden large space buildings have built around Asia, North America, and Europe, in which cases of ice skating stadiums with span of 30m to 60m were concentrated. In the case of baseball parks and football stadiums, even a span of about 165m was built in a wooden structure. In addition, it was found that the structural systems used in wooden large space structures were a funicular arch and truss structure, in that cases, funicular arch system consisting of radial arrangements was used in the examples exceeded 150m and the two way truss system was also used in long span wooden structures exceeding 100m. As the truss structure with a tie-rod or the flexure+tension structure was partially investigated, it can be seen that various timber structural systems need to be devised and researched. Also, It was investigated that a technique in which some members of the truss are made of steel or a composite member of steel and timber is also possible to develop

Temperature distribution in a full-scale steel framed building subject to a natural fire

  • Wald, Frantisek;Chladna, Magdalena;Moore, David;Santiago, Aldina;Lennon, Tom
    • Steel and Composite Structures
    • /
    • 제6권2호
    • /
    • pp.159-182
    • /
    • 2006
  • Current fire design codes for determining the temperature within the structural elements that form part of a complete building are based on isolated member tests subjected to the standard fire. However, the standard time-temperature response bears little relation to real fires and doesn't include the effects of differing ventilation conditions or the influence of the thermal properties of compartment linings. The degree to which temperature uniformity is present in real compartments is not addressed and direct flame impingement may also have an influence, which is not considered. It is clear that the complex thermal environmental that occurs within a real building subject to a natural fire can only be addressed using realistic full-scale tests. To study global structural and thermal behaviour, a research project was conducted on the eight storey steel frame building at the Building Research Establishment's Cardington laboratory. The fire compartment was 11 m long by 7 m wide. A fire load of $40kg/m^2$ was applied together with 100% of the permanent actions and variable permanent actions and 56% of live actions. This paper summarises the experimental programme and presents the time-temperature development in the fire compartment and in the main supporting structural elements. Comparisons are also made between the test results and the temperatures predicted by the structural fire Eurocodes.

Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method

  • Girao Coelho, Ana M.;Simoes da Silva, Luis;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • 제6권1호
    • /
    • pp.33-53
    • /
    • 2006
  • The rotational behaviour of bolted extended end plate beam-to-column connections is evaluated in the context of the component method. The full moment-rotation response is characterized from the force-deformation curve of the individual joint components. The deformability of end plate connections is mostly governed by the bending of the column flange and/or end plate and tension elongation of the bolts. These components form the tension zone of the joint that can be modelled by means of "equivalent T-stubs". A systematic analytical procedure for characterization of the monotonic force-deformation behaviour of individual T-stub connections is proposed. In the framework of the component method, the T-stub is then inserted in the joint spring model to generate the moment-rotation response of the joint. The procedures are validated with the results from an experimental investigation of eight statically loaded extended end plate bolted moment connections carried out at the Delft University of Technology. Because ductility is such an important property in terms of joint performance, particularly in the partial strength joint scenario, special attention is given to this issue.