• Title/Summary/Keyword: Steel-surface layer

Search Result 685, Processing Time 0.021 seconds

Thermal Distribution in Living Tissue during Warm Needling Therapy (온침 시술 시 생체 조직 내 열분포 분석에 관한 연구)

  • Kim, Jongyeon;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • Objectives This study aims to analyze a thermal distribution in biological living tissue during warm needling therapy by using a finite element method. The analysis provides an understanding of warm needling's efficacy and safety. Methods A model which consisted of four-layered tissue and stainless steel needle was adopted to analyze the thermal distribution in living tissue with a bioheat transfer analysis. The governing equation for the analysis was a Pennes' bioheat equation. A heat source characteristic of warm needling therapy was obtained by previous experimental measurements. The first analysis of the time-dependent temperature distribution was conducted through points on a boundary between the needle and the tissue. The second analysis was conducted to visualize the horizontal temperature distribution. Results When heat source's peak temperatures was above $500^{\circ}C$ and temperature rising rates were relatively slow, the peak temperature at skin surface exceeded a threshold of pain and tissue damage ($45^{\circ}C$), whereas when the peak temperature was around $400^{\circ}C$, the peak temperature at the skin surface was within a safe limit. In addition, the conduction of combustion energy from the moxa was limited to the skin layer around the needle. Conclusions The results suggest that the skin layer around the needle can be heated effectively by warm needling therapy, but it appears to have little effect at the deeper tissue. These findings enhance our understanding of the efficacy and the safety of the warm needling therapy.

Effects of Laser Source Geometry on Laser Shock Peening Residual Stress (레이저 광원 형상이 레이저 충격 피닝 잔류응력에 미치는 영향)

  • Kim, Ju-Hee;Kim, Yun-Jae;Kim, Joung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.609-615
    • /
    • 2012
  • In LSP (laser shock peening) treatment, the laser source geometries when the laser beam strikes the metal target area are diverse. The laser spot geometry affects the residual stress field beneath the treated surface of the metallic materials, which determines the characteristics of the pressure pulse. In this paper, detailed finite-element (FE) simulations on laser shock peening have been conducted in order to predict the magnitude and of the residual stresses and the depth affected in Inconel alloy 600 steel. The residual stress results are compared for circular, rectangular, and elliptical laser spot geometries. It is found that a circular spot can produce the maximum compressive residual stresses near the surface but generates tensile residual stresses at the center of the laser spot. In the depth direction, an elliptical laser spot produces the maximum compressive residual stresses. Circular and elliptical spots plastically affect the alloy to higher depths than a rectangular spot.

Friction Behavior of Oil-enriched Nanoporous Anodic Aluminum Oxide Film (오일 함침된 나노 기공 산화알루미늄 필름의 마찰 거동)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Hahn, Jun-Hee;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • Friction behavior of nanoporous anodic aluminum oxide(AAO) film was investigated. A 60 ${\mu}m$ thick AAO film having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. The AAO film was then saturated with paraffinic oil. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 N to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient significantly increased with the increase of load. The boundary lubrication layer of paraffinic oil contributed to the lower friction at relatively low load (0.1 N), but it is less effective at high load (1 N). Plastic deformed layer patches were formed on the worn surface of oil-enriched AAO at relatively low load (0.1 N) without evidence of tribochemical reaction. On the other hand, thick tribolayers were formed on the worn surface of both oil-enriched and as-prepared AAO at relatively high load (1 N) due to tribochemical reaction and material transfer.

Manufacture of magnetite (Fe3O4) electrode and its electrochemical properties (마그네타이트 (Fe3O4) 전극의 제조와 전기화학 특성)

  • Kim, Myong-Jin;Kim, Dong Jin;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Flow Accelerated Corrosion (FAC) causes unexpected accidents in a secondary side of a nuclear power plant. The secondary side pipes are mainly carbon steel tubes that have a protective magnetite ($Fe_3O_4$) layer on the inner surface. The stability of the protective magnetite layer depends on the parameters related to the FAC phenomena such as pH, temperature, flow rate, surface roughness etc. The dissolution of magnetite is basically the electrochemical reaction, but the most of the experiments of magnetite dissolution were carried out thermodynamically to determine the solubility of magnetite. The knowledge of the electrochemical properties of magnetite is required to understand the dissolution process of magnetite. This paper reviews the manufacture of the magnetite ($Fe_3O_4$) electrode, and summaries the electrochemical properties of the magnetite.

Ultrasonic Backscattering on Painted Rough Surface at near Rayleigh Angle (레일리각 근처에서 도색된 거친 표면으로부터 후방 산란된 초음파)

  • Kwon, Sung-D.;Kwon, Yong-G.;Yoon, Seok-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The angular dependence (or profile) of backscattered ultrasound was measured for steel specimens with a range of surface roughness, $1{\sim}71{\mu}m$. Backscattering profiles at or near the Rayleigh angle still showed roughness dependence while the assessment of surface roughness via normal profile became impossible due to the paint layer masking the roughness. The peak amplitude directly radiated at the Rayleigh angle was proportional to the surface roughness, while the averaged peak amplitude radiated from the backward propagating Rayleigh wave, produced by reflection at a corner, was inversely proportional. In the painted specimens, the linearity of direct backward radiation with the roughness was observed even at the roughness of less than three hundredths of a wavelength, and the abnormal multiple bark reflection caused by periodic roughness disappeared.

A Downwardly Deflected Symmetric Jet to prevent Edge Overcoating in Continuous Hot-Dip Galvanizing (연속식 용융아연도금 공정에서 단부 과도금 현상을 방지하기 위한 하향 대칭 분류유동 연구)

  • Ahn, Gi-Jang;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1156-1162
    • /
    • 2005
  • In this study, a noble method is proposed to prevent the edge overcoating (EOC) that may develop near the edge of the steel strip in the gas wiping process of continuous hot-dip galvanizing. In our past study (Trans. of the KSME (B), Vol. 27, No. 8, pp. $1105\~1113$), it was found that EOC is caused by the alternating vortices which are generated by the collision of two opposed jets in the region outside the steel strip. When the two opposed jets collide at an angle much less than $180^{o}$, non-alternating stable vortices are established symmetrically outside the steel strip, which lead to nearly uniform pressure on the strip surface. In order to deflect both jets downward by a certain angle, a cylinder with small diameter is installed tangentially to the exit of the lower lip of the two-dimensional jet. In order to find an optimum cylinder diameter, the three dimensional flow field is analysed numerically by using the commercial code, STAR-CD. And the coating thickness is calculated by using an integral analysis method to solve the boundary layer momentum equation. In order to compare the present noble method with the conventional baffle plate method to prevent the EOC, the flow field with a baffle plate is also calculated. The calculation results show that the tangentially installed cylinder at the bottom lip of the jet exit is more effective than the baffle plate to prevent EOC.

Analysis of Post-tensioned Slab Bridge by Means of Specially Orthotropic Laminates Theory (특별직교이방성 복합적층판 이론을 응용한 포스트텐션된 슬래브 교량의 해석)

  • Han, Bong Koo;Kim, Yun Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2002
  • A post-tensioned slab bridge is analyzed by the specially orthotropic laminates theory. Both the geometry and the material of the cross section of the slab are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis. The result of this paper can be used for post-tensioned slab bridge analysis by the engineers with undergraduate study in near future.

Plugging and Re-opening Phenomena of the 5Cr-1Mo Steel Leak Hole by Water Leakage in Sodium Atmosphere (소듐 분위기에서 물누출에 의한 5Cr-1Mo Ferrite강 구멍의 막힘과 재개방 현상)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyeun;Park, Jin-Ho;Hwang, Sung-Tai
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.674-679
    • /
    • 1998
  • Small water leak experiment was carried out in liquid sodium atmosphere using a specimen of ferrite steel, which will be expected to be a material of the heat transfer tube of liquid metal fast breeder reactor. Self-plugging phenomena of leak path could be explained by the products of reaction and corrosion by sodium-water reaction. Also, re-opening mechanism of self-plugged path could be explained by the thermal transient and vibration of heat transfer tube. As a result, perfect re-opening time of self-plugged leak path was observed to be 129 minutes after water leak initiation. Re-opening shape of a specimen was appeared with double layer of circular type, and re-opening size of this specimen surface was about 2 mm diameter on sodium side.

  • PDF

Analysis of Performance of Multi-functioned frictional force measuring instrument using adaptive smoothing (적응화 평활화법을 이용한 다기능 마찰력 측정기의 성능 분석)

  • Kim, Tae-Soo;Kim, Gwang-Su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • We have developed the multi-functioned friction measuring instrument for the previous research. In here, we improved the performance of friction measuring instrument by applying the adaptive smoothing method and analyzed the friction of plate and monitoring function of friction surface through scratch tests. We substituted lubricant steel plate to lubricant oil used for reducing the friction when fabricating steel plate because lubricant oil was regarded as one of the major causes for the environmental pollution. In particular, the functions of various plate such as galvannealed steel sheets were analyzed because friction coefficient could be changed depending on the type of organic/inorganic plate or state of coating layer. Therefore, we demonstrated that adaptive smoothing method could enhance the accuracy of measuring instrument which eliminate the noise. As a result of using the method, it showed the reduction rate 0.0417% for the friction coefficient 0.16.

Study on the Room Temperature Degreasing Conditions of Steel Sheet for Electrogalvanizing (전기아연도금용 강판의 상온 탈지 조건 연구)

  • Tae-Yeon Park;Chae-Won Kim;Su-Mi Yang;Hee-Jun Hong;In-Chul Choi
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • The conventional degreasing process involves removing oil and contaminants at temperatures above 80℃, resulting in excessive energy consumption, increased process costs, and environmental issues. In this study, we aimed to find the optimal degreasing conditions for the pre-treatment process of electro-galvanizing cold-rolled steel sheets, conducted efficiently at room temperature without the need for a separate heating device. To achieve this, we developed a room temperature degreasing solution and a brush-type degreasing tool, aiming to reduce energy consumption and normalize the decrease in degreasing efficiency caused by temperature reduction. Alkaline degreasing solution were prepared using KOH, SiO2, NaOH, Na2CO3, and Sodium Lauryl Sulfate, with KOH and NaOH as the main components. To enhance the degreasing performance at room temperature, we manufactured additives including sodium oleate, sodium stearate, sodium palmitate, sodium lauryl sulfate, ammonium lauryl sulfate, silicone emulsion, and EDTA-Na. Room temperature additives were added to the alkaline degreasing solution in quantities ranging from 0.1 to 20 wt.%, and the uniformity of degreasing and the adhesion of the galvanized layer were evaluated through Dyne Test, T-bending Test, OM, SEM, and EDS analyses. The results indicated that the optimal degreasing solution composition consisted of NaOH (30 g/L), Na2CO3 (30 g/L), SLS (6 g/L), and room temperature additives (≤1 wt%).