• 제목/요약/키워드: Steel-surface layer

검색결과 682건 처리시간 0.026초

훼로보론과 NaBF4 에 의한 강재의 침 경화처리에 관하여 (Study on the Boriding of Steel in Ferroboron and NaBF4 Powder Mixture)

  • 김문일;여운관
    • 한국표면공학회지
    • /
    • 제8권3호
    • /
    • pp.5-11
    • /
    • 1975
  • The boronizing method using ferroborn and NaBF4 powder mixture was studied for surface hardening of medium carbon steel. This boride layer was compared with a boride layer that was formed in ferroboron and KBF4 powder mixture. The frequency factor and activation energy were discussed in this paper. The main results obtained can be summerized as follow. 1) The optimum range of NaBF4 content is 10 to 15% of weight to obtain a thick and dense boride layer. 2) The depth of the boride layer was approximately expressed by the following equation : {{{{d=100 exp (-18,000/RT) SQRT { t} }} 3) The oxidating resistance of boronized steel proved to be good at 800$^{\circ}C$ but almost unacceptable near at 900 $^{\circ}C$. 4) The NaBF4 effect was the same as that reported for KBF4.

  • PDF

열처리 조건이 무\ulcorner향성 규소강판의 절연피막에 미치는 영향 (Effects of Hear Teratment on the Insulation Layer of Non-oriented Silicon Steel Sheets)

  • 유영종;신정철
    • 한국표면공학회지
    • /
    • 제22권3호
    • /
    • pp.109-117
    • /
    • 1989
  • The effect of heft treatment on the characteristic properties of insulation layer is studied for two kinds of non-oriented silicon steels, which were insulation-coates with various kinds of inorganic and inorganic-organic complex coating solutions. In addition, how the carbon contained in the insulation layer would affect the carbon content and the magnetic properties of the steel substrates is examined. Lower temperature heat treftment ($480^{\circ}C$ for 0.5hr) is found to render morw favorable surface qualities, wheras higher temperature heat treatment ($790^{\circ}C$ for 2hr) better core loss due to grin growt occurred during the heat treatment. Decarburization of the steel substrate is also found unaffectrd by the presence of carbon in the insulation layer.

  • PDF

Enhancement of Surface Hardness and Corrosion Resistance of AISI 310 Austenitic Stainless Steel by Low Temperature Plasma Carburizing Treatment

  • Lee, Insup
    • 한국표면공학회지
    • /
    • 제50권4호
    • /
    • pp.272-276
    • /
    • 2017
  • The response of AISI 310 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. This grade of stainless steel shows better corrosion resistance and high temperature oxidation resistance due to its high chromium and nickel content. In this experiment, plasma carburizing was performed on AISI 310 stainless steel in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-Ar-CH_4$ gas mixtures. The working pressure was 4 Torr (533Pa approx.) and the applied voltage was 600 V during the plasma carburizing treatment. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. The phase of carburized layer formed on the surface was confirmed by X-ray diffraction. The resultant carburized layer was found to be precipitation free and resulted in significantly improved hardness and corrosion resistance.

아루미나 용사에 의한 연강 및 스테인레스강의 표면개질 (Surface Modification of a Mild and Stainless Steel by Alumina Spraying)

  • 배종규;박승옥;정인상
    • 한국표면공학회지
    • /
    • 제22권4호
    • /
    • pp.185-196
    • /
    • 1989
  • The surface modification of a mild and stainless steel by alumina sprayed coating were studied. The effects of surface roughness and bond coating layer on the adhesive strengthy and durability of sprayed specimens were also investiated. The adhesive strength of ceramic coating was affected by surface roughness and bond coating layer thinkness. That showed excellent undergrit blast time and bond coating layer; 60 sec and 0.15-0.33mm, respectively. The adhesive strength and densification of sprayed coating with air pressure were superior to those of without and fracture was mainly occured at alumina-bond coating interface. Under ambient atmosphere at $800^{\circ}C$, the oxides existed within bond coating layer promote diffusion of oxygen to lower durability of sprayed specimens. In this case, fracure was occured at sudstrate-bond coating interface.

  • PDF

Study in the Mechanisms of Formation of Transfer Film under the Condition of Wear of Steel AISI1020 by Natural Rubber

  • Wang, De-Guo;Zhang, Si-Wei;He, Ren-Yang;Li, Ming-Yuan
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.223-224
    • /
    • 2002
  • The mechanisms of formation of transfer film under the condition of wear of Steel AISI1020 by natural rubber were investigated. The transfer film was observed and the formation mechanisms were clarified. The formation process of transfer film on the worn surface of the steel could be divided into two stages. Firstly, the adhesive layer emerged on the worn surface of the steel by adhesion of natural rubber. in which the macromolecular chains of natural rubber joined to the surface of the steel by Van der Waals' force. And then, the iron atom and metal oxide reacted with the macromolecular of natural rubber in the adhesive layer and produced Fe-polymer compound. As a result, the transfer film was formed on the worn surface of the steel. The transfer film was joined to the worn surface of the steel by the chemical bonds and electrostatic force.

  • PDF

Design of Advanced Weathering Steel with High Corrosion Resistance for Structural Applications

  • Choi, B.K.;Jung, H.G.;Yoo, J.Y.;Kim, K.Y.
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.121-129
    • /
    • 2005
  • Basic design concept of the future steel structure requires environmental compatibility and maintenance free capability to minimize economic burdens. Recent trends in alloy design for advanced weathering steel include addition of various alloying elements which can enhance formation of stable and protective rust layer even in polluted urban and/or high $Cl^{-}$ environment. The effects of Ca, Ni, W, and Mo addition on the corrosion property of Ca-modified weathering steel were evaluated through a series of electrochemical tests (pH measurement and electrochemical impedance spectroscopy: EIS) and structural analysis on rust layer formed on the steel surface. Ca-containing inclusions of Ca-Al-Mn-O-S compound are formed if the amount of Ca addition is over 25 ppm. Steels with higher Ca content results in higher pH value for condensed water film formed on the steel surface, however, addition of Ni, W, and Mo does not affect pH value of the thin water film. The steels containing a high amount of Ca, Ni, W and Mo showed a dense and compact rust layer with enhanced amount of ${\alpha}-FeOOH$. Addition of Ni, W and Mo in Ca-modified weathering steel shows anion-selectivity and contributes to lower the permeability of $Cl^{-}$ ions. Effect of each alloying element on the formation of protective rust layer will be discussed in detail with respect to corrosion resistance.

선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성 (Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel)

  • 박일초;김성종
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

심리스 튜브 제조용 피어싱 플러그 공구강과 SA210C강의 고온 미끄럼 마모에 미치는 예비산화의 영향 (Effects of Preoxidation on High Temperature Wear of Piercing Plug Tool Steel Sliding Against SA210C Steel Used for Production of Seamless Tube)

  • 최병영;구윤식
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.264-270
    • /
    • 2013
  • Effects of preoxidation on high temperature wear of piercing plug tool steel sliding against SA210C steel used for production of seamless tube have been studied using a pin-on-disc CETR tribometer, under applied normal load of 20 N at $900^{\circ}C$ in air. It was found in the preoxidized pin specimens of piercing plug tool steel that the coefficient of friction decreased to about 0.4 at an initial stage followed by showing nearly constant value of about 0.4 during high temperature wear testing. On the other hand, it was also found in the pin specimens without preoxidation that the coefficient of friction increased and fluctuated, ranging from about 0.3 to 0.6 during the tests until the running period of about 800 sec. The compact and continuous Fe-oxide layer was formed on the contact surface of the preoxidized pin specimens after high temperature wear testing followed by penetrating along the grain boundaries of coarse ferrite in the decarburized region beneath the oxide layer due to the lower hardness of the region.

소실모형 주조법에서 도형제가 오스테나이트 스테인레스강 주물의 표면층조직에 미치는 영향 (Effect of Coating Materials on Surface Layer Structures of Austenitic Stainless Steel Castings in Evaporative Pattern Process)

  • 김지윤;조남돈
    • 한국주조공학회지
    • /
    • 제15권6호
    • /
    • pp.604-615
    • /
    • 1995
  • Austenitic stainless steel castings using expandable polystylene(referred to hereafter as EPS) patterns are often affected by distinctive defects associated with incomplete decomposition of the EPS as the molds are filled with metal. The quality of the castings, with particular reference to carbon pick-up in austenitic stainless steel is further influenced to a significant extent by such factors as reduced pressure, the additive by adding $Na_2CO_3$ in coating. The steel composition and microstructure were examined at the surface layer of castings, at depths of 1mm, by taking successive layers of swarf and analysis. In experiments, the carburizing atmosphere was neutralized, showing that the coating performed efficiently by decomposing almost instantly on heating and liberating $CO_2$. The upper parts of castings obtained using EPS patterns were slightly higher in carbon pick-up than other parts. Comparing the 316L and 304 stainless steel castings, qualitative and quantative differences could be found between the carbon pick-up behaviours as influence of the carbon content and alloying elements. Carbide former such as Cr makes carbon more soluble in the steel. This must make carbon pick-up in the surface layer but at the same time richer in carbon especially in the 304 stainless steel castings.

  • PDF

전자빔에 의한 조성구배계면 Ni/Steel 합금재료의 개발 (Fabrication of Graded-Boundary Ni/steel Material by Electron Beam)

  • 김병철;김도훈
    • 한국레이저가공학회지
    • /
    • 제2권2호
    • /
    • pp.27-33
    • /
    • 1999
  • Electron beam was applied on the low carbon steel in order to fabricate Metal/Metal GBM(Graded Boundary Material). Ni sheet was placed on the steel substrate. The electron beam was irradiated on the surface and produced a homogeous alloyed layer. Sequential repetition of electron beam treatments for 4 times resulted in 8mm thick graded layer. To determine each layers property, optical microscopy, XRD, microhardness tester and EDS were used. The residual stress was measured by the low angle x-ray diffraction method. The graded boundary layer was stepwise profile, but Ni content incresed up to 80 wt% and Fe content decreased 20 wt% near surface. Each layers microstructure and hardness varied by different Fe/Ni composition. The compressive residual stress was induced by martensite transformation in the 1st and End layers and the shrinkage cracks were formed in graded layer by rapid cooling.

  • PDF