• 제목/요약/키워드: Steel-surface layer

검색결과 688건 처리시간 0.024초

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

Effect of Heat Treatment on Corrosion Resistance of Zn-Mg-Al Alloy Coated Steel

  • Il Ryoung Sohn;Tae Chul Kim;Sung Ju Kim;Myung Soo Kim;Jong Sang Kim;Woo Jin Lim;Seong Mo Bae;Su Hee Shin;Doo Jin Paik
    • Corrosion Science and Technology
    • /
    • 제23권4호
    • /
    • pp.283-288
    • /
    • 2024
  • Hot-dip Zn-Mg-Al coatings have a complex microstructure consisting of Zn, Al, and MgZn2 phases. Its crystal structure depends on alloy content and cooling rates. Microstructure and corrosion resistance of these coatings might be affected by heat treatment. To investigate effect of heat treatment on microstructure and corrosion resistance of Zn-Mg-Al coatings, Zn-1.5%Mg-1.5%Al coated steel was heated up to 550 ℃ at a heating rate of 80 ℃/s and cooled down to room temperature. At above 500 ℃, the ternary phase of Zn-MgZn2-Al was melted down. Only Zn and MgZn2 phases remained in the coating. Heat- and non-heat-treated specimens showed similar corrosion resistance in Salt Spray Test (SST). When a Zn-3.0%Mg-2.5%Al coated steel was subjected to heat treatment at 100 ℃ or 300 ℃ for 200 h and compared with GA and GI coated steels, the microstructure of coatings was not significantly changed at 100 ℃. However, at 300 ℃, most Al in the coating reacted with Fe in the substrate, forming a Fe-Al compound layer in the lower part of the coating. MgZn2 was preferentially formed in the upper part of the coating. As a result of SST, Zn-Mg-Al coated steels showed excellent corrosion resistance, better than GA and GI.

Thermo mechanical analysis of a ceramic coated piston used in a diesel engine

  • Buyukkaya, Ekrem;Cerit, Muhammet;Coban, Mehmet
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.429-442
    • /
    • 2016
  • The aim of this paper is to determine temperature and stress distributions in a ceramic based on Partially Stabilized Zirconia coated steel piston crown by using plasma spraying for improving performance of a marine diesel engine. Effects of coating constituent and thickness on temperature and stress distributions were investigated including comparisons with results from an uncoated piston by means of finite element method namely ANSYS. Temperature developed at the coated surface is significantly higher than that of the uncoated piston. The maximum stress components occur between bond coat and adjacent ceramic layer. Provided that coating thickness is constant as 0.5 mm, when numbers of layers increase, magnitude of the normal stress decrease about 34.1% on the base metal surface according to uncoated piston, but the base metal surface temperature of the steel piston increase about 13.1%.

자동차용 판재 성형시 드로우비드 공정인자별 인출특성에 대한 연구 (Effect of drawbead process parameters on the drawing characteristics of sheet metals for automotive parts)

  • 김원태;이동활;강우순;서만석;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.140-143
    • /
    • 2003
  • The drawbead is an important part in sheet metal forming for automotive part and its effect is affected by various process parameters. Therefore in this study, drawbead friction test was performed at various process parameters - panels (cold rolled and galvanized sheet steel), lubricants (having three different viscosities), bead materials(steel, iron) and surface treatment of bead (Cr plating). Circular shape bead has been used for the test. The results show that friction and drawing characteristics were mainly influenced by the nature of zinc coating, viscosity of lubricants, surface treatment of a bead and hardness of coated layer.

  • PDF

Duplex Stainless Steel (2205)의 Low Temperature Plasma Nitriding 처리시 처리온도 및 가스함량에 따른 S-phase 거동 (Effect of Treatment Temperature and Gas Content on the Characteristics of Surface Layer of Low Temperature Plasma Nitrided Duplex Stainless Steel.)

  • 이인섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.291-292
    • /
    • 2015
  • Duplex Stainless Steel의 Plasma Nitriding 처리 시 가스량과 처리온도가 표면 특성에 미치는 영향을 조사하였다. $N_2$함량 및 처리 온도가 각각 10%에서 25%로 $400^{\circ}C$에서 $430^{\circ}C$로 증가함에 따라서 질소가 과고용된 S-phase의 두께 및 표면 경도가 증가하였으나, 내부 식성은 $Cr_2N$$(Fe,Cr)_4N$이 석출하여 감소하였다. 질소를 10%로 고정하고 $CH_4$함량을 증가시키면 1%일 때 S-phase의 두께가 최대가 되며 그이후로 감소하였다. 처리온도 $400^{\circ}C$일 때 질소함량이 10%, $CH_4$ 함량이 5%일 경우 내식성이 모재보다 증가하였다.

  • PDF

Aluminizing and Corrosion of Carbon Steels in N2/0.5%H2S Gas at 650-850℃

  • Abro, Muhammad Ali;Lee, Dong Bok
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.110-114
    • /
    • 2015
  • The effect of hot-dip aluminizing on the corrosion of the low carbon steel was studied at $650-850^{\circ}C$ for 20-50 h in $N_2/0.5%\;H_2S$ gas. The aluminized steel consisted primarily of the Al topcoat and the underlying Al-Fe alloy layer. Aluminizing drastically improved the corrosion resistance by forming the ${\alpha}-Al_2O_3$ surface scale. Without aluminizing, the steel formed nonadherent, fragile, thick scales, which consisted of FeS as the major phase and iron oxides such as FeO, $Fe_3O_4$ and $Fe_2O_3$ as minor ones.

16Cr-10Ni-2Mo 스테인리스강의 정전류 실험에 의한 플라즈마 이온질화 온도 변수에 따른 부식 특성 (Corrosion Characteristics of 16Cr-10Ni-2Mo Stainless Steel with Plasma Ion Nitriding Temperatures by Galvanostatic Experiment)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제50권2호
    • /
    • pp.91-97
    • /
    • 2017
  • The aim of this paper is to investigate the characteristics of electrochemical corrosion with the plasma ion nitriding temperature for 16Cr-10Ni-2Mo stainless steel. The corrosion behavior was analyzed by means of galvanostatic experiment in natural seawater that applied various current density with plasma ion nitriding temperature parameters. In result of galvanostatic experiment, relatively less surface damage morphology and the less damage depth was observed at a nitrided temperature of $450^{\circ}C$ that measured the thickest nitrided layer(S-phase). On the other hand, the most damage depth and unified corrosion behavior presented at a temperature of $500^{\circ}C$.

Plasma nitriding on chromium electrodeposit

  • Wang Liang;K.S. Nam;Kim, D.;Kim, M.;S.C. Kwon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.29-30
    • /
    • 2001
  • This paper presents some results of plasma nitriding on hard chromium deposit. The substrates were C45 steel and $30~50{\;}\mu\textrm{m}$ of chromium deposit by electroplating was formed. Plasma nitriding was carried out in a plasma nitriding system with $95NH_3{\;}+{\;}SCH_4$ atmosphere at the pressure about 600 Pa and different temperature from $450^{\circ}C{\;}to{\;}720^{\circ}C$ for various time. Optical microscopy and X-ray diffraction were used to evaluate the characteristics of surface nitride layer formed by nitrogen diffusion from plasma atmosphere inward iCr coating and interface carbide layer formed by carbon diffusion from substrate outward Cr coating. The microhardness was measured using microhareness tester at the load of 100 gf. Corrosion resistance was evaluated using the potentiodynamic measurement in 3.5% NaG solution. A saturated calomel electrode (SiCE) was used as the reference electrode. Fig.1 shows the typical microstructures of top surface and cross-section for nitrided and unnitrided samples. Aaer plasma nitriding a sandwich structure was formed consisting of surface nitride layer, center chromium layer and interface carbide layer. The thickness of nitride and carbide layers was increased with the increase of processing temperature and time. Hardness reached about 1000Hv after nitriding while 900Hv for unnitrided hard chromium deposit. X-ray diffraction indicated that surface nitrided layer was a mixture of $Cr_2N$ and CrN at low temperature and erN at high temperature (Fig.2). Anodic polarization curves showed that plasma nitriding can greatly improve the corrosion resistance of chromium e1ectrodeposit. After plasma nitriding, the corrosion potential moved to noble direction and passive current density was lower by 1 to 4 orders of magnitude compared with chromium deposit(Fig.3).

  • PDF

Zn-Ni계 합금도금강판의 마찰특성에 관한 연구 (Frictional characteristics of electro Zn-Ni alloy coated steel sheets)

  • 김영석;박기철;조재억
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1807-1818
    • /
    • 1991
  • 본 연구에서는 자동차용 Zn-Ni계 합금 전기도금 강판(electro Zn-Ni alloy coated steel sheet, EGN)에서 도금층 중의 Ni함량에 따른 금층의 표면특성이 마찰거 동에 미치는 영향과 윤활유 종류에 따른 Ni 함량별 마찰특성을 파악하여 최적 스탬핑 조건을 도출하는데 기여하고자 한다.