• 제목/요약/키워드: Steel-surface layer

검색결과 682건 처리시간 0.022초

안정된 스텐트 코팅막을 형성하기 위해 금속표면과 고분자 사이의 화학적 결합을 이용한 고분자 코팅법 개발 (Development of Polymer Coating Method for Stable Stent Coating Using Chemical Bond Between Metal Surface and Polymer)

  • 남대식;이우경
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권1호
    • /
    • pp.7-13
    • /
    • 2007
  • To produce stable polymer coating layer using the interaction between metal stent and polymer layer, Ahx-HSAB was synthesized by coupling 6-aminoheanoic acid (Ahx) with N-Hydroxy succinimidyl 4-azidobenzonate (HSAB) containing photo reactive group. Then, Ahx-HSAB was applied to self·assembled monolayer (SAM) on $TiO_2$-coated surface, since one end of Ahx-HSAB was carboxyl acid which was known to be able to interact with $TiO_2$ surface. That SAM layer was incubated in 1% polycaprolacton (PCL) solution and photoreacted by ultraviolet light (254 nm) to produce the chemical bond between SAM and polymer layer, followed by PCL polymer coating ({\sim}5\;{\mu}m$) by the method of spray coating. The surface change was investigated by measuring of contact angle of the surface. The contact angle values of stainless steel (SS) surface, $TiO_2$-coated surface, SAM layer by Ahx-HSAB, photoreacted surface with PCL and PCL layer by spray coating were 70.48${\pm}$1.89, 38.57${\pm}$3.31, 60.14${\pm}$2.21, 54.91${\pm}$2.70 and 56.47${\pm}$2.12, respectively. The stability of polymer layers was tested by incubation of PCL-coated plates in 0.1M PBS buffer (pH 7.4, 0.05%, Tween 80) with vigorous shaking (200 rpm). While the poiymer layer prepared by these processes showed the intact surface morphology over 3 days, the polymer layers prepared by spray coating of PCL onto SS plate (control 1) and $TiO_2$-coated SS plate (control 2) were Peeled off in 3 days. Thus, the polymer coating method using SAM and photoreaction seems to be a effective method to obtain the stable polymer layer onto SS surface.

이온질화처리된 AI-Cr-Mo 강의 재가열 처리에 의한 표면조직변화 (Effect of Reheating on the Ion-nitrided Surface Microstructure of AI-Cr-Mo Steel)

  • 이정일;신영식;김문일
    • 열처리공학회지
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 1988
  • In this study the improvement of mechanical properties of ion-nitrided SACM-1 steel was investigated by analysing microstructural developments and hardness increase in the nitrided surface layer. Specimens were quenched at $570^{\circ}C$, which is lower than the eutectoid temperature ($590^{\circ}C$) of Fe-N binary system after nitrided at temperature of $460-570^{\circ}C$ for 2-8 hours under constant pressure of 8 torr. The depths of diffusion and compound layers were appeared to proportional to the root mean square time of nitriding. And the hardness showed the maximun value Hv = 1200 for the specimen nitrided at $530^{\circ}C$. Hardness distribution of the. ion-nitrided steels were increased by diffusion treatment below the eutectoid temperature of the Fe-N binary system. A prolonged heat treatment below the eutectoid temperature was attributed to the increase in the depth of diffusion layer at the expense of the decrease in surface hardness of the ion nitreded steel.

  • PDF

플라즈마 질탄화 & 후산화처리로 S45C강에 형성된 산화막의 마찰거동 (Frictional behaviour of Oxide Films Produced on S45C Steel by Plasma Nitrocarburizing and Post Plasma Oxidation Treatment)

  • 정광호;이인섭
    • 한국재료학회지
    • /
    • 제16권12호
    • /
    • pp.766-770
    • /
    • 2006
  • The frictional behavior of oxide films on top of the plasma nitrocarburized compound layers was investigated in terms of post-oxidation treatment temperatures. The post-oxidation treatment at both temperatures($400^{\circ}C,\;500^{\circ}C$) produced magnetite($Fe_3O_4$) films which led to a significant enhancement in corrosion resistance. However, this process did not result in any improvement in frictional behavior of the nitrocarburized surface. The wear mechanisms were governed predominantly by the abrasive action of the slider on the surface irrespective of the counterface material(SiC and Bearing steel). When the specimen was sliding against a SiC counterface, the oxide films were destroyed during the early stage of the sliding process and the wear debris of the oxide film at the sliding track had a great influence on the friction coefficient. On the other hand, when sliding against a bearing steel counterface, the slider was mainly worn out due to the much higher hardness of the surface hardened layer. The fluctuation of the friction coefficient of $400^{\circ}C$-oxidized/ nitrocarburized specimen is much severer than that of $500^{\circ}C$ specimen, due to the less amount of wear debris.

Effects of Surface Machining by a Lathe on Microstructure of Near Surface Layer and Corrosion Behavior of SA182 Grade 304 Stainless Steel in Simulated Primary Water

  • Zhang, Zhiming;Wang, Jianqiu;Han, En-hou;Ke, Wei
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.1-7
    • /
    • 2019
  • To find proper lathe machining parameters for SA182 Grade 304 stainless steel (SS), six kinds of samples with different machining surface states were prepared using a lathe. Surface morphologies and microstructures of near surface deformed layers on different samples were analysed. Surface morphologies and chemical composition of oxide films formed on different samples in simulated primary water with $100{\mu}g/L\;O_2$ at $310^{\circ}C$ were characterized. Results showed that surface roughness was mainly affected by lathe feed. Surface machining caused grain refinement at the top layer. A severely deformed layer with different thicknesses formed on all samples. In addition to high defect density caused by surface deformation, phase transformation, residual stress, and strain also affected the oxidation behaviour of SA182 Grade 304 SS in the test solution. Machining parameters used for # 4 (feed, 0.15 mm/r; back engagement, 2 mm; cutting speed, 114.86 m/min) and # 6 (feed,0.20 mm/r; back engagement, 1 mm; cutting speed, 73.01 m/min) samples were found to be proper for lathe machining of SA182 Grade 304 SS.

AIP 코팅법에서 코팅 시간이 고속도강의 TiN 코팅층 성질에 미치는 영향 (Effect of Coating Time on the Property of TiN-Coated Layer of High Speed Steel by Arc Ion Plating)

  • 김해지;전만수
    • 소성∙가공
    • /
    • 제15권5호
    • /
    • pp.366-372
    • /
    • 2006
  • The effect of coating time in arc ion plating on surface properties of the TiN-coated high speed steel(SKH51) is presented in this paper. Surface roughness, micro-hardness, coated thickness, atomic distribution of TiN and adhesion strength are measured for various coating times. It has been shown that the coating time has a deep influence on the micro-hardness, the coated thickness, the atomic distribution of Ti and the adhesion strength of the SKH51 steels but that it has little influence on the surface roughness.

AIP법에서 증착시간이 SM45C 강의 TiN 코팅층 성질에 미치는 영향 (Effect of Deposition Time on the Properties of TiN-coated Layer of SM45C Steel by Arc Ion Plating)

  • 김해지
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.44-50
    • /
    • 2011
  • The effect of deposition time in arc ion plating on surface properties of the TiN-coated SM45C steel is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured for various deposition times. It has been shown that the deposition time has a considerable effect on the micro-hardness, the coated thickness, and the atomic distribution of TiN of the SM45C steels but that it has little influence on the surface roughness and adhesion strength.

방전가공된 공구강표면의 연마재 유동가공에 관한 연구 (A Study of Abrasive Flow Machining on EDMed Surfacs of Tool Steel)

  • 최재찬;김창호;허관도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.8-13
    • /
    • 1996
  • A relatively new non-traditional finishing process called Abrasive Flow Machining(AFM) is being used to deburr, polish and radius workpiece or produce compressive residual stresses by flowing an abrasive-laden viscoelastic compound across the surface to be machined. This paper presents the effects of AFM on surfaces of tool steel produced by EDM and W-EDM. Using AFM, white layer produced by EDM is erased almost equally and the amount of metal removal is significantly affected the initally machined surface condition of workpiece. The dimension of workiece is enlarged and its surface roughness is improved as AFM time is increased. The optimal AFM time can be established from the experimental results. It is considered that the grinding method lide AFM is useful to grind complex or slim geometry of workpiece even. Scanning Electron Microscopy(SEM) was used to study the surface characteristics of the workpiece before and after AFM.

  • PDF

질소침투 열처리한 STS 410 및 410L 마르텐사이트계 스테인리스강의 템퍼링에 의한 조직변화 (Microstructural Changes during Tempering Treatment of Nitrogen-permeated STS 410 and 410L Martensitic Stainless Steels)

  • 이해정;공정현;이해우;유대경;강창룡;성장현
    • 열처리공학회지
    • /
    • 제20권2호
    • /
    • pp.84-93
    • /
    • 2007
  • Microstructural changes during tempering at the temperature range of $300^{\circ}C{\sim}700^{\circ}C$ for the nitrogen-permeated STS 410 and 410L martensitic stainless steels has been investigated. After nitrogen permeation at temperature between 1050 and $1150^{\circ}C$, the surface layer appeared fine $Cr_2N$ of square and rod types in the martensite matrices. Hardness of the nitrogen-permeated surface layer represented 680Hv and 625Hv, respectively, for 410 and 410L steels. It is considered that the fine homogeneously dispersive effect of precipitates by nitrogen caused the increased hardness. Due to the counter current effect of carbon from interior to surface during nitrogen diffusion from surface to interior, the 0.1%C alloyed 410 steel showed the low nitrogen content of 0.025% compared with 0.045% of 410L steel at the distance of $100{\mu}m$ from the surface. Tempering of nitrogen-alloyed 410 and 410L showed the maximum hardness at $450^{\circ}C$. This maximum hardness was considered to be the secondary hardening effect of very fine carbide and nitride. The decrease in hardness at $700^{\circ}C$ was the softening effect of the matrix due to the precipitation of many needle-shaped $Cr_2N$ for 410 steel and the precipitation of coarse nitride of $Cr_2N$ in line with the spherical precipitates with directionality for 410L steel. For 410 steel, the corrosion resistance of nitrogen permeated surface in the solution of 1 N $H_2SO_4$ were nearly unchanged, however the superior corrosion resistance was obtained for nitrogen permeated 410L steel compared to the solution annealed condition.

Droplet가 냉연 롤러용 강의 마모 특성에 미치는 영향 (Effect of the Droplets on the Wear Characteristics of Steel for the Cold Working Roller)

  • 문봉호
    • Tribology and Lubricants
    • /
    • 제20권3호
    • /
    • pp.145-151
    • /
    • 2004
  • A modified surface layer by ion implantation is very thin (under 1 $\mu\textrm{m}$) but has superior mechanical characteristics. therefore ion implantation has been used successfully as a surface treatment technology to improve the wear, fatigue, and corrosion resistances of materials. MEVVA which is a kind of ion beam apparatus has merits of low cost and is usable to various metals, but occurs a droplet ranging from micron to tens of micron on the implanted surface at ion implantations. wear is a dynamic phenomenon on interacting surfaces with rotative motion. Since wear changes in condition of the surface, we should control to surface. In order to improve a wear resistance of Ti ion implanted 1C-3Cr steel(material for roller in the cold working process), it is essential to investigate the effect of the droplets on the wear characteristics. In this study, we investigate the effect of the droplets on the wear characteristics of 1C-3Cr steel using SEM Tribosystem as in-situ system. Results show that the droplet occurred at ion implantation becomes the cause of severe wear. Therefore, the ion-implanted surface should be removed the droplet to improve wear resistance.

Influence of Annealing Temperatures on Corrosion Resistance of Magnesium Thin Film-Coated Electrogalvanized Steel

  • Lee, Myeong-Hoon;Lee, Seung-Hyo;Jeong, Jae-In;Kwak, Young-Jin;Kim, Tae-Yeob;Kim, Yeon-Won
    • 한국표면공학회지
    • /
    • 제46권3호
    • /
    • pp.116-119
    • /
    • 2013
  • To improve the corrosion resistance of an electrogalvanized steel sheet, we deposited magnesium film on it using a vacuum evaporation method and annealed the films at $250-330^{\circ}C$. The zinc-magnesium alloy is consequently formed by diffusion of magnesium into the zinc coating. From the anodic polarization test in 3% NaCl solution, the films annealed at $270-310^{\circ}C$ showed better corrosion resistance than others. In X-ray diffraction analysis, $ZnMg_2$ was detected through out the temperature range, whereas $Mg_2Zn_{11}$ and $FeZn_{13}$ were detected only in the film annealed at $310^{\circ}C$. The depth composition profile showed that the compositions of Mg at $270-290^{\circ}C$ are evenly and deeply distributed in the film surface layer. These results demonstrate that $270-290^{\circ}C$ is a proper temperature range to produce a layer of $MgZn_2$ intermetallic compound to act as a homogeneous passive layer.