• 제목/요약/키워드: Steel-surface layer

검색결과 682건 처리시간 0.023초

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

Al-Ti 혼합 분말 슬러리를 이용한 강의 알루미나이징처리 방법 (Convenient Aluminizing Process of Steel by Using Al-Ti Mixed Powder Slurry)

  • 이영기;김정열;이유기
    • 한국재료학회지
    • /
    • 제19권4호
    • /
    • pp.207-211
    • /
    • 2009
  • In this study, we attempted to develop a convenient aluminizing process, using Al-Ti mixed slurry as an aluminum source, to control the Al content of the aluminized layer as a result of a one-step process and can be widely adopted for coating complex-shaped components. The aluminizing process was carried out by the heat treatment on disc and rod shaped S45C steel substrates with Al-Ti mixed slurries that were composed of various mixed ratios (wt%) of Al and Ti powders. The surface of the resultant aluminized layer was relatively smooth with no obvious cracks. The aluminized layers mainly contain an Fe-Al compound as the bulk phase. However, the Al concentration and the thickness of the aluminized layer gradually decrease as the Ti proportion among Al-Ti mixed slurries increases. It has also been shown that the Al-Ti compound layer, which formed on the substrate during heat treatment, easily separates from the substrate. In addition, the incorporation of Ti into the substrate surface during heat treatment was not observed.

이온 주입한 강의 미시적 마모 튼성의 평가 (Development of methodology for evaluating tribological properities of Ion-implanted steel)

  • 문봉호;최병영
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.146-154
    • /
    • 1997
  • Ion implantation has been used successfully as a surface treatment technology to improve the wear. fatigue and corrosion resistances of materials. A modified surface layer by ion implantation is very thin(under 1 m), but it has different mechanical properties from the substrate. It has also different wear characteristics. Since wear is a dynamic phenomenon on interacting surfaces with relative motion, an effective method for investigtating the wear of a thin layer is the observation of wear process in microscopic detail using in-situ system. The change of wear properties produces the transition of wear mode. To know the microscopic wear mechanism of this thin layer, it is very important to clarify its microscopic wear mode. In this paper, using the SEM and AFM Rribosystems as in-situ system, the microscopic wear of Ti ion-implanted 1C-3Cr steel, a material for roller in the cold working process, was investigated in repeated sliding. The depth of wear groove and the speciffc wear amount were changed with transition of microscopic wear mode. The depth of wear groove with friction cycles in AFM tribosystem and specific wear amount of Ti ion-implanted 1C-3Cr steel were less about 2-3 times than those of non-implanted 1C-3Cr steel. The microscopic wear mechansim of Ti ion-implanted 1C-3Cr steel was also clarified. The microscopic wear property was quantitatively evaluated in terms of microscopic wear mode and specific wear amount.

  • PDF

AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향 (Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

Plasma Paste Boronizing법에 의한 Ni-Cr-Mo강의 붕화물층 생성거동과 내 토사마모특성에 관한 특성 (A Study On the Sand Wear Resistance and Formation Behavior of Boride Layer Formed on Ni-Cr-Mo Steel by Plasma Paste Boronizing Treatment)

  • 조재현;박학균;손근수;윤재홍;김현수;김창규
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.52-58
    • /
    • 2004
  • The surface property and formation behavior of a boride layer formed on Ni-Cr-Mo steel in a plasma paste boronizing treatment were investigated. The plasma paste boronizing treatment was carried out at 973~1273 K for 1-7 hrs under the gas ratio of Ar:H$_2$ (2:1). The thickness of the boride layer increased with increasing temperature and time in the boronizing treatment. The cross-section of the boride layer was a tooth structure and the hardness was Hv 2000~2500. XRD analysis revealed that the compound was identified as FeB, $Fe_2$B, and mixed phase of FeB/$Fe_2$B in the boride layer formed at 973~1073 K, 1173K, and 1273K, respectively. The Ni-Cr-Mo alloy boronized at 1173-1273 K showed the best excellent wear resistance against the sand. As a results of corrosion test in 1 M $H_2$$SO_4$ solution, $Fe_2$B formed on the matrix alloy exhibited higher corrosion resistance than FeB.

이온 실화처리한 Ni-Cr-Mo강의 저온파괴인성에 관한 연구 (A Study on the Low Temperature Fracture Toughness of Ion-nitrided Ni-Cr-Mo Steel)

  • 오세욱;윤한기;문인철
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.101-112
    • /
    • 1987
  • Fracture toughness characterization in the transition region is examined for heat-treated and ionnitrided Ni-Cr-Mo steel. After heat treatment for the specimens of Ni-Cr-Mo steel, organizations of specimens-specimens which are heat-treated and ion-nitrided for 4 hours at 500 .deg. C and 5 torr in 25%N/dub 2/-75%H/sub 2/mixed gas-, hardness variety, and X-ray diffraction pattern of the ion-nitriding compound layer are observed. Fracture toughenss test of unloading compliance method were conducted over the regions from room trmperature to -70.deg. C. The compound layer was consisted of r'=Fe/sub 4/N phase and ion-nitrided layer's depth was 200mm from surface. The transition regions of heat-treated and ion-nitrided specimens were about -30.deg. C and -50.deg. C, respectively. The transition region of ion-nitrided specimens is estimated less than that of heat-treated one, and this is the effect of ion-nitriding.

  • PDF

AISI 316L stainless steel에 저온 플라즈마 침탄 및 질화처리 시가스조성이 표면특성에 미치는 영향 (Effects of Gas Composition on the Characteristics of Surface Layers Produced on AISI316L Stainless Steel during Low Temperature Plasma Nitriding after Low Temperature Plasma Carburizing)

  • 이인섭;안용식
    • 한국표면공학회지
    • /
    • 제42권3호
    • /
    • pp.116-121
    • /
    • 2009
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) offer the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. The 2-step low temperature plasma processes were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The influence of gas compositions on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ and concentration of N on the surface increased with increasing both nitrogen gas and Ar gas levels in the atmosphere. The thickness of ${\gamma}_N$ increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness was independent of nitrogen and Ar gas contents and reached up to about 1200 $HV_{0.1}$ which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was also much enhanced than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

강판의 두께 깊이와 소성변형비 변화 (The Variation of Plastic Strain Ratio Through Thickness in Sheet Steel)

  • 김인수;박노진;김성진;서완영;이민구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.117-120
    • /
    • 1997
  • Microstructure and pole figure through thickness in cold rolled sheet steel were investigated. The calculated plastic strain ratio in surface is greatly different with that in center layer and measured value in tensile test.

  • PDF

Zn-Ti계용융아연 도금강판의 착색화 특성 (Charactristice of a colored Galvanized Coating using Ti-Zn Alloy System)

  • 전선호
    • 한국표면공학회지
    • /
    • 제30권5호
    • /
    • pp.320-332
    • /
    • 1997
  • The development of colored surface on zinc coating by the oxidation of a melten alloy of zinc with a minor amount of oxygen-avid additive such as tianium has been studied. Using a galvanizing Zinc alloy containing 0.1 to 0.3wt%Ti, gold, purple or blue color was developed clearly and stably, depending upon the extent of oxidation, by air cooling after hot dipping in a bath at temperature of $550^{\circ}C$ to $600^{\circ}C$. The source of the color is light interference with surface oxide layer. THe final color depends on the thickness of the color depends on the thickness of $TiO_2$, played So compositing, temperature and time at elevated temperature after are all controlling variables. Since oxidation film such as $TiO_2$ played role of passivation film, the corrosion resistance in a colored galvanized steel sheet. It is also thought that surface oxide layer of $TiO_2$ inhibited dissolution of the coating layer.

  • PDF

착화제를 이용한 치환동 도금층의 밀착력 향상에 관한 연구 (A Study on the Adhesion Improvement of Immersion Copper Coatings using Complexing Agent)

  • 구석본;전준미;허진영;이홍기
    • 한국표면공학회지
    • /
    • 제48권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Amino-carboxyl acid as a complexing agent in acid copper sulfate solution was utilized to improve the adhesion of immersion copper layer for steel wire. According to the tape test results, regardless of alloy composition of the wire, the adhesion of immersion copper layer was improved with the addition of amino-carboxyl acid. The incorporation of H and Fe in the plating layer was analyzed by TOF-SIMS. The H and Fe were detected at the entire coating layer without any addition of amino-carboxyl acid. However, with addition of amino-carboxyl acid, the H and Fe were scarcely detected at the coating layer.