• Title/Summary/Keyword: Steel-plate Concrete Composite Beam

Search Result 120, Processing Time 0.022 seconds

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

Flexural Strength Evaluation of Steel Plate-Concrete Composite Beam using Bolted (절곡 강판을 볼트로 체결한 강판-콘크리트 합성보의 휨강도 평가)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.126-136
    • /
    • 2018
  • A steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine inhomogeneous two materials. The steel plate is assembled by welding an existing composite beam. In this study, new steel-plate concrete composite beam, called a SPC Beam, was developed to reduce the shear connector and improve the workability. The SPC Beam was composed of folding steel plates and concrete, without a shear connector. The folding steel plate was assembled using high strength bolt instead of welding. To improve the workability in field construction, a hat-shaped Cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode. The flexural strength of the specimen for positive moment and negative moment was calculated using the plastic stress distribution method. The test results showed that the flexural strength of the new SPC Beam had 80% of the strength of a complete composite beam. In addition, increasing the composite ratio was possible through clearance controls of the cap. In this study, the performance of the SPC Beam was verified through additional experiments and analyses with the cross-sectional shape and cap as variables, because the representative shape in the positive negative moment region is targeted.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

Behavior of Members in the Unit Model of Steel-Concrete Hybrid Deck for Bridges (교량용 강ㆍ콘크리트 합성 바닥판 단위모델의 부재별 거동 특성)

  • 정광회;정연주;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.493-498
    • /
    • 2003
  • The 3D nonlinear analysis for steel-concrete hybrid deck is carried out by utilizing 2D plane interface element. The effect of the slip occurred between steel and concrete can be modeled by this element. This analysis focuses on not only global behavior of steel-concrete hybrid deck but also local behaviors of members of it such as lower steel plate, I-beam, and concrete which are varied by slip modulus. In this analysis, it was founded that the limit slip modulus could classify the states of steel-concrete hybrid deck into three parts such as full-composite, partial-composite, and non-composite, considering the behavior of lower steel plate, I-beam, and concrete at the mid span and the support as well as the yield load and ultimate load of it.

  • PDF

Experimental Study on the Shear Capacity of Slim AU Composite Beam (슬림 AU 합성보의 전단성능에 관한 실험연구)

  • Lee, Mi Hyang;Oh, Myoung Ho;Kim, Young Ho;Jeong, Sugchang;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.99-105
    • /
    • 2017
  • The SLIM AU composite beam consists of U-shaped steel plate, A-shaped steel cap and infilled concrete. The bottom steel plate acts as tension bars, and the top steel cap takes roles of shear connector and compression bars in the conventional reinforced concrete section. In this paper the shear strength of this composite beam with closed steel section has been evaluated through the concentrated loading shear experiments. Test results under the symmetrical and asymmetrical loading conditions were compared with the predicted values based on the KBC 2016. The composite beam showed the greater shear strength capacities than those of the theoretical evaluation.

Nonlinear Finite Element Analysis of Steel Composite Girders (합성형 거더의 3차원 비선형 거동해석)

  • 주영태;강병수;성원진;박대열;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.173-176
    • /
    • 2003
  • Progressive failure analysis of steel composite double T-beam is performed to investigate the mechanical effects of steel composite fabricated in the webs of double-T beam to replace concrete placing forms. The analysis is based on nonlinear finite element scheme considering material nonlinearities of concrete, reinforcing bar and PS steel. Four-parameter strength envelope defines the hardening and softening phenomena of concrete with consideration of the various levels of confining pressures. Rankine maximum strength criterion defines the elasto-plasticity of PS steel and reinforcing bar, and Von Mises $J_2$ failure criterion for steel plate which wraps the concrete webs of double T-beam. A 6m long two-span steel composite double T-beam is analyzed and compared with the experimental results.

  • PDF

New technique for strengthening reinforced concrete beams with composite bonding steel plates

  • Yang, Su-hang;Cao, Shuang-yin;Gu, Rui-nan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.735-757
    • /
    • 2015
  • Composite bonding steel plate (CBSP) is a newly developed type of structure strengthened technique applicable to the existing RC beam. This composite structure is applicable to strengthening the existing beam bearing high load. The strengthened beam consists of two layers of epoxy bonding prestressed steel plates and the RC beam sandwiched in between. The bonding enclosed and prestressed U-shaped steel jackets are applied at the beam sides. This technique is adopted in case of structures with high longitudinal reinforcing bar ratio and impracticable unloading. The prestress can be generated on the strengthening steel plates and jackets by using the CBSP technique before loading. The test results of full-scale CBSP strengthened beams show that the strength and stiffness are enhanced without reduction of their ductility. It is demonstrated that the strain hysteresis effect can be effectively overcome after prestressing on the steel plates by using such technique. The applied plates and jackets can jointly behave together with the existing beam under the action of epoxy bonding and the mechanical anchorage of the steel jackets. The simplified formulas are proposed to calculate the prestress and the ultimate capacities of strengthened beams. The accuracy of formulas was verified with the experimental results.

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.