• Title/Summary/Keyword: Steel-plate

Search Result 2,892, Processing Time 0.024 seconds

Corner Steel plate-Reinforced Core Wall System

  • Park, Hong-Gun;Kim, Hyeon-Jin;Park, Jin-Young
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.193-199
    • /
    • 2019
  • For better structural performance and constructability, a new composite core wall system using steel plate columns at the corners of the core section was developed. Using the proposed core wall, nonlinear section analysis and 3-dimensional structural analysis were performed for the prototype core wall section and super high-rise building, respectively. The analysis results showed that, when compared to traditional RC core wall case, the use of the corner steel plate columns provided better structural capacity, which allows less wall thickness and re-bars. Further, due to such effects, the construction cost and time can be reduced despite the use of steel plate columns.

A Study to Improve Bonding Strength of Strengthening Plate with Notches (노치를 이용한 보강재의 부착력 증가 방안에 관한 연구)

  • Han, Man-Yop;Song, Byeong-Pyo;Lee, Kwang-Myong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.129-139
    • /
    • 1999
  • Recently, many strengthening methods are developed and used to rehabilitate existing structures. One of the old and popular methods is strengthening with bonding steel plate. However, steel plate bonding method has a defect, which is debonding failure of steel plate before yielding of the plate due to stress concentration at the of the bonded plate. The objective of this study is the experimental verification of the improved bonding properties of a strengthening plate with notches. Two normal beams and ten strengthened beams with steel plate, which have several different notches, are tested and showed their effectiveness. Test results show that the notches of strengthening plate significantly improve post-yielding behavior, compared to normally strengthened beams. It is proved that the notches of strengthening plate increases ultimate strength 14% more than normal strengthened beam after yield strength. As for the shape of notches, arc notch is the best. and triangle notch and trapezoidal notch are the next and end welding method has no effect.

New form of perforated steel plate shear wall in simple frames using topology optimization

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.325-339
    • /
    • 2020
  • This study presents a practical application of topology optimization (TO) technique to seek the best form of perforated steel plate shear walls (PSPSW) in simple frames. For the numerical investigation, a finite element model is proposed based on the recent particular form of PSPSW that is called the ring-shaped steel plate shear wall. The TO is applied based on the sensitivity analysis to maximize the reaction forces as the objective function considering the fracture tendency. For this purpose, TO is conducted under a monotonic and cyclic loading considering the nonlinear behavior (material and geometry) and buckling. Also, the effect of plate thickness is studied on the TO results. The final material volume of the optimized plate is limited to the material volume of the ring-shaped plate. Finally, an optimized plate is introduced and its nonlinear behavior is investigated under a cyclic and monotonic loading. For a more comprehensive view, the results are compared to the ring-shaped and four usual forms of SPSWs. The material volume of the plate for all the models is the same. The results indicate the strength, load-carrying, and energy dissipation in the optimized plate are increased while the fracture tendency is reduced without changing the material volume.

Shear response of lean duplex stainless steel plate girders

  • Armoosh, Salam R.;Khalim, A.R.;Mahmood, Akram Sh.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1267-1281
    • /
    • 2015
  • Carbon steel plate girders have been used on a large scale in the building industry. Nowadays, Lean Duplex Stainless Steel (LDSS) plate girders are gaining popularity as they possess greater strength and are more impervious to corrosion than those that are constructed from carbon steel. Regardless of their popularity, there is very limited information with regards to their shear behavior. In this paper, the non-linear finite element analysis was employed to investigate the shear behavior of LDSS plate girders. Parameters considered were the web thickness, the flange width, and the girders aspect ratio. The analysis revealed that although the shear behavior of the LDSS girders was no different from that of carbon steel plate girders, it had obviously been affected by the non-linearity of the material. Furthermore, the selected parameters were found to pronounce effect on the shear capacity of the LDSS girders. That is, the shear capacity increased considerably with web thickness, and increased slightly with flange width. However, it was reduced as the aspect ratio increased. Comparisons between the finite element analysis failure loads and those predicted by the current European Code of Practice revealed that the latter underestimated the shear strength of the LDSS plate girders.

An Effect of the Behavior of Steel Plate Girder bridge with Applying External Post-Tensioning Method (외부후긴장 보강공법이 판형교의 거동에 미치는 영향)

  • Min, Rak-Ki;Sung, Deok-Yong;Kim, Eun-Kyun;Lee, Hee-Up;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.514-521
    • /
    • 2006
  • In strengthening structure, the external post-tensioning method which secure clearness in the structure analysis process is adopted to bridge as well as architecture structure. Therefore, the major objective of this study is to investigate the effects and application of external post-tensioning method for steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis and laboratory test for the dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease stress and deflection on steel plate girder bridge for serviceability. It is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method. The servicing steel plate girder bridge with external post-tensioning is the reasonable reinforcement measures which could be secured the stability of dynamic behavior and increase a dropped durability.

  • PDF

Analysis of Temperature Reduction and Reflection Spectrum of Steel Plate according to Differential Thermal Mechanism of Solar Heat Paint (태양열 차단 도료의 차열 메카니즘에 따른 강판재의 온도저감 및 반사스펙트럼 분석)

  • Mun, Dong-Hwan;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.37-38
    • /
    • 2017
  • In Infrared rays, which are 50% of sunlight, act as heat rays to heat buildings. Solar heat paint is widely used to protect buildings from sunlight. Solar heat coatings are used to block buildings form sunlight. Solar heat paints are classified as heat-reflective paints and heat-insulating paints according to the differential thermal mechanism. In this study, we study the thermal differential mechanism by analyzing the temperature change of the coated steel plate and the solar reflection spectrum on the surface. In this experiment, exposed steel plate, heat-reflective coated steel plate, heat-insulating coated steel plate, and general paint coated steel plate were used. As a result, when the infrared rays of 780nm ~ 1400nm were irradiated, the heat reflective paint had a temperature lower by 10 degrees than other paints. Analysis of the reflection spectrum of the paint shows that the heat paint is lower in heat than other paints because it has higher reflectance of light and absorbs much of the infrared rays.

  • PDF

Reinforcement Location of Plate Girders with Longitudinal Stiffeners (플레이트 거더의 수평보강재 보강 위치)

  • Son, Byung-Jik;Huh, Yong-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.82-89
    • /
    • 2009
  • Unlike concrete bridge, steel bridge resists external force by forming thin plate. Thus, because steel girder bridge has big slenderness ratio, buckling is a major design factor. Plate girder consists of flange and web plate. Because of economic views, web plate that resists shear forces is made by more thinner plate. Thus, web plate has much risk for buckling. The objective of this study is to analyze the buckling behaviors of plate girder and to present the proper reinforcement location of longitudinal stiffeners. Various parametric study according to the change of web height, transverse stiffeners and load condition are examined.

Compression Behavior of Steel Plate-Concrete Structures for both Stiffened and Nonstiffened structures by Rib (리브 보강 유무에 따른 강판-콘크리트 구조의 압축거동)

  • Choi, Byong Jeong;Han, Hong Soo;Han, Kweon Gyu;Lee, Seung Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.471-481
    • /
    • 2009
  • The purpose of this study was to compare and analyze the compression behaviors of SSC (stiffened steel plate-concrete) and NSC (non-stiffened steel plate-concrete) structures, and to identify the effects of the increment in the structural performance of SSC structures. SCC structures are structures that integrate steel plates with line support from ribs (H-shape) and point supports from studs with concretes. On the other hand, NSC structures are structures that integrate steel plates with point supports from studs with concrete. The following results were obtained in this study. First, compared with NSC structures, it was shown that SSC structures have advantages in terms of preventing steel plate buckling and delaying quick destruction through the brittleness of concrete. In addition, the SSC structures showed a 5-28% increment in maximum compressive strength, which far surpassed that shown by the NSC structures.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.