• Title/Summary/Keyword: Steel-Fiber reinforcement

Search Result 476, Processing Time 0.03 seconds

Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers (폴리프로필렌 및 강섬유 보강콘크리트의 휨 성능에 관한 비교 연구)

  • Cho, Baiksoon;Lee, Jong-Han;Back, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1677-1685
    • /
    • 2014
  • Short discrete fibers compounded with concrete can enhance the tensile resistance and ductility of concrete. Recently, the effectiveness of the reinforcement has increased according to the increasing length of steel fiber. However, the lengthening of steel fiber requires reducing the ratio of the fiber content to remain the workability and quality of concrete. Thus, the present study evaluated the flexural performance of fiber reinforced concrete with less than l.0% fiber volume ratios of steel fiber, 30mm and 60mm long, and polypropylene fiber, being evaluated as a good reinforcing material with chemical stability, long-term durability, and cost effectiveness. Concrete with more than 0.25% steel and 0.5% polypropylene fibers improved the brittle failure of concrete after reaching cracking strength. Concrete reinforced with polypropylene exhibited deflection-softening behavior, but that with more than 0.5% polypropylene delayed stress reduction and recovered flexural strength by 60 to 80% after cracking strength. In conclusion, concrete reinforced with more than 0.75% polypropylene could improve structural flexural performance. In particular, energy absorption capacity of reinforced concrete with 1.0% polypropylene fiber was similar to that with 0.5% and 0.7% steel fibers.

Experimental shear strengthening of GFRC beams without stirrups using innovative techniques

  • Hany, Marwa;Makhlouf, Mohamed H.;Ismail, Gamal;Debaiky, Ahmed S.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.415-433
    • /
    • 2022
  • Eighteen (18) (120×300×2200 mm) beams were prepared and tested to evaluate the shear strength of Glass Fiber Reinforced Concrete (GFRC) beams with no shear reinforcement, and evaluate the effectiveness of various innovative strengthening systems to increase the shear capacity of the GFRC beams. The test variables are the amount of discrete glass fiber (0.0, 0.6, and 1.2% by volume of concrete) and the type of longitudinal reinforcement bars (steel or GFRP), the strengthening systems (externally bonded (EB) sheet, side near-surface mounted (SNSM) bars, or the two together), strengthening material (GFRP or steel) links, different configurations of NSM GFRP bars (side bonded links, full wrapped stirrups, side C-shaped stirrups, and side bent bars), link spacing, link inclination angle, and the number of bent bars. The experimental results showed that adding the discrete glass fiber to the concrete by 0.6%, and 1.2% enhanced the shear strength by 18.5% and 28%, respectively in addition to enhancing the ductility. The results testified the efficiency of different strengthening systems, where it is enhanced the shear capacity by a ratio of 28.4% to 120%, and that is a significant improvement. Providing SNSM bent bars with strips as a new strengthening technique exhibited better shear performance in terms of crack propagation, and improved shear capacity and ductility compared to other strengthening techniques. Based on the experimental shear behavior, an analytical study, which allows the estimation of the shear capacity of the strengthened beams, was proposed, the results of the experimental and analytical study were comparable by a ratio of 0.91 to 1.15.

Tension Stiffening Effect of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 인장강화효과)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.581-589
    • /
    • 2014
  • This paper presents the tension stiffening behavior from experimental results of each 6 amorphous steel fibers and normal steel fibers reinforced direct tensile specimens with the main variables such as cover thickness to bar diameter ratio. A tension stiffening effect for steel fiber reinforced RC tension members improve on the increase in cover thickness, and also amorphous steel fiber is usually superior to normal steel fiber. The reinforcement of steel fibers controlled the splitting cracks and led to significant increase in the tension stiffening effect. In particular, if cover thickness is more than twice the bar diameter, the amorphous steel fiber reinforced specimen is controlled the splitting crack and increased the tension stiffening effect. And, the tension stiffening effect of amorphous steel fiber reinforced concrete tension members is different to current structural design code provision.

Evaluation of In-plane Shear Strength of CFRP Rebar-Concrete Member Using Modified Compression Field Theory (수정압축장이론에 의한 탄소보강근-콘크리트 부재의 면내전단강도 평가)

  • Su-Tae Kang;Eun-Ik Yang;Myung-Sung Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.13-20
    • /
    • 2024
  • In this study, when subjected to in-plane shear such as a shear wall, the behavior characteristics of a concrete member using CFRP rebars were investigated when the longitudinal reinforcement ratio was kept constant at 2.96% and the transverse reinforcement ratio was changed from 0.30 to 2.98%. The evaluation was conducted based on MCFT theory and analyzed by comparison with the case of concrete members using steel rebars. When the reinforcement ratio ranged from 0.30 to 1.19%, concrete members employing CFRP rebars exhibited higher shear strength compared to those using steel rebars. In contrast, at high reinforcement ratios of 1.79 and 2.98%, it was observed that the shear strength of the member with CFRP rebar was lower compared to the member with steel rebar. Maximum shear strain was observed to be higher for members reinforced with steel rebars at lower reinforcing bar ratios, while for ratios of 0.97% and above, CFRP rebars resulted in higher maximum shear strain. As the reinforcement ratio increases, the use of CFRP rebar instead of steel rebar results in a greater increase in maximum shear strain. By analyzing the difference in strain in the reinforcing bar as well as the difference in principal strain in the element caused by differences in the mechanical properties of the steel rebar and CFRP rebar, the shear strength and shear strain when using steel rebar and CFRP rebar with different reinforcement ratios can be compared and analyzed.

Analysis of Nonlinear Behaviors of Shotcrete-Steel Support Lining Considering the Axial Force Effects (축력의 영향을 고려한 숏크리트-강지보 합성 라이닝의 비선형 거동 분석)

  • Yu, Jeehwan;Kim, Jeongsoo;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.357-367
    • /
    • 2017
  • Bending and axial forces simultaneously occur at the cross-section of a shotcrete lining reinforced with steel supports due to the tunnel geometry. The shotcrete has changing flexural stiffness depending on the axial forces and, as a result, severely nonlinear behavior. The mechanical properties of a shotcrete-steel composite also depend on the type of steel support. This study presents a fiber section element model considering the effect of axial force to evaluate the nonlinear behavior of a shotcrete-steel composite. Additionally, the model was used to analyze the effects of different types of steel supports on the load capacity. Furthermore, a modified hyperbolic model for ground reaction, including strain-softening, is proposed to account for the ground-lining interaction. The model was validated by comparing the numerical results with results from previous load test performed on arched shotcrete specimens. The changes in mechanical responses of the lining were also investigated. Results show a lining with doubly reinforcement rebar has similar load capacity as a lining with H-shaped supports. The use of more materials for the steel support enhances the residual resistance. For all types of steel reinforcement, the contribution of steel supports during peak load decreases as the ground becomes stiffer.

A study on strength reinforcement of one-sided reinforced hybrid laminates made of 22MnB5 and carbon fiber reinforced plastics (22MnB5 / 탄소섬유 강화 플라스틱으로 제작된 단면 보강 하이브리드 적층판의 강도 보강에 관한 연구)

  • Lee, Hwan-Ju;Jeon, Young-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • As environmental regulations are strengthened, automobile manufacturers continuously research lightweight structures based on carbon fiber reinforced plastic (CFRP). However, it is difficult to see the effect of strength reinforcement when using a single CFRP material. To improve this, a hybrid laminate in which CFRP is mixed with the existing body structural steel was proposed. In this paper, CFRP patch reinforcement is applied to each compression/tensile action surface of a 22MnB5 metal sheet, and it was evaluated through a 3-point bending experiment. Progressive failure was observed in similar deflection on bending deformation to each one-sided reinforced specimen. After progressive failure, the tensile reinforced specimen was confirmed to separate the damaged CFRP patch and 22MnB5 sheet from the center of the flexure. The compression reinforced specimen didn't separate that CFRP patch and 22MnB5, and the strength reinforcement behavior was confirmed. In the compression reinforced specimen, damaged CFRP patches were observed at the center of flexure during bending deformation. As a result of checking the specimen of the compression reinforcement specimen with an optical microscope, It is confirmed that the damaged CFRP patch and the reinforced CFRP patch overlapped, resulting in a concentrated load. Through the experimental results, the 22MnB5 strength reinforcement characteristics according to the reinforcement position of the CFRP patch were confirmed.

A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System (MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구)

  • Kim, Hwan Kuk;Kwon, Hye In;Do, Kyu Hoi
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.

The Strength Evaluation of Reinforced Flaw by Stiffener in Woven Fiber Reinforced Composite Plates (섬유강화 복합재료에서 결함의 보강재에 의한 강도 평가)

  • 이문철;최영근;이택순
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.96-104
    • /
    • 1994
  • The use of advanced composite materials has grown in recent years in aerospace and other structures. Out of various kinds of repairing methods the one selecteh for this study is an idealized case which simulates a situation where a damaged laminate has been repaired by drilling a hole and therefter plugging the hole with reinforcement. Two typesof reinforcement are investigated ;adhesively bonged plug reinforcement or snug-fit unbonded plug in the hole. For each case of reinforcement, four different sizes of hole diameter and three types of reinforcing material(steel, aluminum, plexiglass) are employed for investigation. The experiment are mainloy forced on the evaluation of ultimate strength of laminate with reinforced hole in comparison to its counterpart with the open hole.

  • PDF

comparative Study on confinement Steel Amount of RC Column Bent (철근콘크리트 교각 심부구속철근량의 비교연구)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF

Flexural Strengthening Effect of Carbon Fiber Sheet Considering Different Status of Damages in RC Beams (RC 보의 손상 상태를 고려한 탄소섬유시트의 휨보강 효과)

  • Park, Sung-Soo;Jo, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.157-167
    • /
    • 2002
  • In most cases, quantity of reinforcement is determined without regard to the difference of initial strain, and status of damages when calculated the strengthening in flexure at beams. Thus, the purpose of this study is to investigate the flexural strengthening efficiency and behavior of RC beams strengthened with carbon fiber sheets(CFS) considering different status of damages. in this paper, a nonlinear analysis program considering rip-off strength and residual stress of steel bars and concrete in different status of damages is developed to predict the flexural behavior of CFS strengthened beams. Rip-off strength equation is obtained by modifying moment of inertia in the Robert's equation. And conformed developed nonlinear analysis program in variable of strengthening CFS amount and status of damages(initial, case1, case2, case3) and tension reinforcement ratio(0.2~1.0%).