• Title/Summary/Keyword: Steel tube

Search Result 1,112, Processing Time 0.025 seconds

GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading

  • Luat, Nguyen-Vu;Lee, Jaehong;Lee, Do Hyung;Lee, Kihak
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This study presents applications of the multivariate adaptive regression splines (MARS) method for predicting the ultimate loading carrying capacity (Nu) of rectangular concrete-filled steel tubular (CFST) columns subjected to eccentric loading. A database containing 141 experimental data was collected from available literature to develop the MARS model with a total of seven variables that covered various geometrical and material properties including the width of rectangular steel tube (B), the depth of rectangular steel tube (H), the wall thickness of steel tube (t), the length of column (L), cylinder compressive strength of concrete (f'c), yield strength of steel (fy), and the load eccentricity (e). The proposed model is a combination of the MARS algorithm and the grid search cross-validation technique (abbreviated here as GS-MARS) in order to determine MARS' parameters. A new explicit formulation was derived from MARS for the mentioned input variables. The GS-MARS estimation accuracy was compared with four available mathematical methods presented in the current design codes, including AISC, ACI-318, AS, and Eurocode 4. The results in terms of criteria indices indicated that the MARS model was much better than the available formulae.

Composite action in connection regions of concrete-filled steel tube columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.47-64
    • /
    • 2003
  • In a nonlinear finite element study on the mechanical behavior of simple beam connections to continuous concrete-filled steel tube columns, two principally different connection types were analyzed: one with plates attached to the outside of the tube wall, relying on shear transfer, and one with an extended plate inserted through the steel section to ensure bearing on the concrete core. The load was applied partly at the connection within the column length and partly at the top, representing the load from upper stories of a multistory building. The primary focus was on the increased demand for load transfer to ensure composite action when concrete with higher compressive strength is used. The results obtained from the analyses showed that the design bond strength derived from push tests is very conservative, mainly due to the high frictional shear resistance offered by pinching and contraction effects caused by connection rotation. However, with higher concrete strength the demand for load transfer increases, and is hard to fulfill for higher loads when connections are attached only to the steel section. Instead, the connection should penetrate into the concrete core to distribute load to the concrete by direct bearing.

Experimental studies of circular composite bridge piers for seismic loading

  • Chen, Sheng-Jin;Yang, Kuo-Chen;Lin, K.M.;Wang, C.C.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.261-273
    • /
    • 2012
  • This study proposes and examines a circular composite bridge pier for seismic resistance. The axial and flexural strengths of the proposed bridge pier are provided by the longitudinal reinforcing bars and the concrete, while the transverse reinforcements used in the conventional reinforced concrete pier are replaced by the steel tube. The shear strength of this composite pier relies on the steel tube and the concrete. This system is similar to the steel jacketing method which strengthens the existing reinforced concrete bridge piers. However, no transverse shear reinforcing bar is used in the proposed composite bridge pier. A series of experimental studies is conducted to investigate the seismic resistant characteristics of the proposed circular composite pier. The effects of the longitudinal reinforcing bars, the shear span-to-diameter ratio, and the thickness of the steel tube on the performance of strength, ductility, and energy dissipation of the proposed pier are discussed. The experimental results show that the strength of the proposed circular composite bridge pier can be predicted accurately by the similar method used in the reinforced concrete piers with minor modification. From these experimental studies, it is found that the proposed circular composite bridge pier not only simplifies the construction work greatly but also provides excellent ductility and energy dissipation capacity under seismic lateral force.

An Experimental Study on TR-CFT Columns subjected to Axial Force and Cyclic Lateral Loads (축력과 반복수평력을 받는 TR-CFT기둥에 관한 실험적 연구)

  • Park, Jai Woo;Kim, Jin Ho;Hong, Young Kyun;Hong, Gi Soup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.403-411
    • /
    • 2007
  • CFT (Concrete filled steel tube) column has become popular for building construction due to not only its composite effect but also economic effect. However, the conventional CFT column also has its own disadvantages having plastic buckling at the end of column followed by the reduction of strength by yielding of steel tube. An experiment on TR-CFT (Transversely reinforced CFT) column are conducted for making up for conventional CFT column's disadvantages. The experiment parameters are strength of concrete, the layer numbers of carbon fiber sheet. In this study, hysteretic curve, initial stiffness, strength, plastic deformation capacity, and dissipated energy are compared and analyzed between CFT and TR-CFT columns.

Nonlinear Finite Element Analysis of Composite Girder with Concrete Infilled Tube (콘크리트 충전 강관을 갖는 프리스트레스트 합성형 거더의 강-콘크리트 계면 거동)

  • Shin, Dong-Hun;Kim, Young-Hoon;Lee, Ta;Kang, Byeong-Su;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.386-389
    • /
    • 2006
  • Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages of enhancing local buckling and flexural resistances resulting from the lateral confining effect of concrete due to the interactive reaction in the interface layer of steel tube and concrete. The interface behavior in concrete infilled tube of the test composite girder is analyzed by 8-node zero thickness interface finite element combined with 3-D. elastoplastic concrete constitutive model and 3-D. elastoplastic Mindlin shell element. The interface effects between infillled concrete and steel tube are investigated through the comparision of the experimental and numerical results.

  • PDF

Fatigue Life Estimation of $CO^2$ Gas Arc Welded Carbon Steel Tubes ($CO^2$ 가스 용접된 강관파일의 피로수명 평가)

  • 이억섭;김동준;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • In this study. the fatigue lives of two kinds of specimens made by $CO^2$ gas weld were assessed. The materials for two kinds of specimens were taken out of the virgin carbon steel tubes and the used carbon steel tubes respectively. As a result, it was found that the fatigue lives of two groups of specimens were in the same order of magnitude.

  • PDF

Numerical Approach for a Partial CFST Column using an Improved Bond-Slip Model (개선된 부착슬립 모델을 적용한 부분 CFST 기둥의 수치해석)

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-158
    • /
    • 2020
  • In this study, a numerical approach for evaluating the resisting capacity of a partial concrete-filled steel tube (CFST) column is introduced. By strengthening the plastic hinge part of a traditional reinforced concrete column with a steel tube, a partial CFST shows a similar bending moment capacity as that of a full CFST column but with reduced material cost. To conduct an elaborate numerical analysis of a partial CFST column, an improved bond-slip model is applied to a finite element (FE) model at the interface between the steel tube and in-filled concrete. This numerical model is verified through the results of a double curvature bending-compression test. A parametric study with the proposed numerical model is used to obtain the load moment interaction diagrams for evaluating the resisting capacity based on various dimensions. Finally, the required strengthening length is estimated for each degree of thickness of the steel tube, and the failure mechanism of the partial CFST column based on the dimensions of the steel tube are identified.

A Study on the Behaviors of Column-to-Footing Connections for Concrete Filled Tube(CFT) System (콘크리트 충전 각형강관 주각부의 내력 및 변형에 관한 연구)

  • Kim, Cheol-Hwan;Kim, Seong-Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The purpose of this paper is to investigate the behavior of concrete-filled tube columns for footing connections. Eight specimens were tested to investigate such structural behavior according to the column base type. The specimens consisted of concrete-filled steel tube columns (or bare steel tube columns), reinforced concrete footings, and base plates (or stud connectors). The specimens were subjected to lateral cyclic load. The cyclic load was applied according to a predetermined strength sequence. The results of the experiment indicated that the flexural strength of the stud-connector- type column base is higher than that of the base-plate-type column base. The structural behavior of the concrete-filled tube column base was similar to that of the bare steel column base.

Condensation Heat Transfer Characteristics of R-134a with Wall Thickness and Surface Roughness on Stainless Steel Horizontal Plain Tubes (스테인리스 평활관의 관 두께 및 표면거칠기에 따른 R-134a 의 관외측 응축 열전달 특성 연구)

  • Heo, Jae-Hyeok;Yun, Rin;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1203-1210
    • /
    • 2006
  • The filmwise condensation heat transfer coefficients of R-134a on the horizontal copper and stainless steel tubes were measured and analyzed. The outside diameter of the tubes was 15.88 mm, and the tube thickness ranged from 0.89 to 1.65 mm. The polished stainless steel tube had an RMS surface roughness($R_q$) of 0.37 $\mu$m, and commercial stainless steel tubes had an surface roughness($R_q$) of 1.855 $\mu$m. The tests were conducted at the saturation temperatures of 20 and $30^{\circ}C$, and the liquid wall subcoolings from 0.4 to $2.1^{\circ}C$. The measured condensation heat transfer coefficients were significantly lower than the predicted data by the Nusselt analysis. This trend in the stainless steel tube was explained by the effects of thermal resistance of tube material and surface roughness. Based on the experimental data with respect to wall thickness and surface roughness, it was suggested that the existing correlation on external condensation should be modified by considering material and surface roughness factors. The revised correlation was developed by introducing the effects of wall thickness and surface roughness into the Nusselt equation. The average deviation of the revised correlation was 13.0 %.

A Study on High Strength Concrete of Concrete Filled Steel Tube Column (CFT 기둥용 초고강도 충전콘크리트에 관한 연구)

  • Jung, Keun-Ho;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.127-132
    • /
    • 2004
  • CFT(Concrete Filled Steel Tube) is a structure of circular or squared of steel column filled with concrete. The steel tube holds the concrete inside and that makes this structure to perform superior features on stiffness, proof stress, transformation, fire resistance and construction itself. In this study, by over the 800kgf/$\textrm{cm}^2$ of high strength concrete for CFT column, research has been done on the basic property of matter such as fluidity, resistance on segregation, compressive strength, setting icons of the concrete filled in the steel tube under conditions of standard weather. Physical properties of concrete for CFT that Concrete with silica fume, fly ash of air entraining and high-range water reducing agent, that used to CFT column research purpose to find the most ideal composition, which is achieved by the investigation in the concrete's property of matter like ability of Slump, Slump Flow, Air content, Bleeding, and Settlement. For this study, experiments which are bused on obtained the result through physical test are practiced, with all of the experiment, specimens only for control are produced in each method of curing and analyzed to relations with core strength in mock-up test. In mock-up test, the research is studied compactability of concrete filled in tube and degree of hydration hysteresis, as a basic reference for applying to field of CFT column which is used over 800kgf/$\textrm{cm}^2$ high strength concrete.