• Title/Summary/Keyword: Steel support

Search Result 655, Processing Time 0.027 seconds

Practical fatigue/cost assessment of steel overhead sign support structures subjected to wind load

  • van de Lindt, John W.;Ahlborn, Theresa M.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.343-356
    • /
    • 2005
  • Overhead sign support structures number in the tens of thousands throughout the trunk-line roadways in the United States. A recent two-phase study sponsored by the National Cooperative Highway Research Program resulted in the most significant changes to the AASHTO design specifications for sign support structures to date. The driving factor for these substantial changes was fatigue related cracks and some recent failures. This paper presents the method and results of a subsequent study sponsored by the Michigan Department of Transportation (MDOT) to develop a relative performance-based procedure to rank overhead sign support structures around the United States based on a linear combination of their expected fatigue life and an approximate measure of cost. This was accomplished by coupling a random vibrations approach with six degree-of-freedom linear dynamic models for fatigue life estimation. Approximate cost was modeled as the product of the steel weight and a constructability factor. An objective function was developed and used to rank selected steel sign support structures from around the country with the goal of maximizing the objective function. Although a purely relative approach, the ranking procedure was found to be efficient and provided the decision support necessary to MDOT.

Evaluation on the Applicability of a Lattice Girder for a Support System in Tunnelling (격자지보의 터널지보재로서의 현장 적용성 평가)

    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.204-213
    • /
    • 1999
  • NATM(New Austrian Tunnelling Method) uses a support system of shotcrete, rockbolt and steel support, which are installed after tunnel excavation. Recently, a lattice girder among these support system is used in tunnelling. A lattice girder is a new steel support developed in Europe for the replacement of an existing H-shaped steel set, which is reported to have some problems in installation. This is a triangular shape welded with steel rods and is a light-weight support system which enables fast and easy installation of porepolling. The major advantage of a lattice girder is the good bonding with shotcrete. In this study, to evaluate the applicability of a lattice girder in tunnelling in Korea, field tests were performed at a high speed railway tunnel with a large section. Also, features of lattice girder in field tests were compared with those of a H-shaped steel set respectively. Field tests proved that a lattice girder fully supported the initial earth pressure developed right after excavation and limited ground deformation effectively.

  • PDF

COMPARISONS BETWEEN H-BEAM STEEL RIB AND LATTICE GIRDERS FOR TUNNEL SUPPORT (터널 지보재로서 H형강 Steel Rib와 삼각지보재의 비교연구)

  • 문홍득;박정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.17.1-24
    • /
    • 1995
  • In tennelling lattice girders have basically the same function as steel arch supports. They serve as elements of temporary lining and in some cases also as part of the permanent lining. Also lattice girders are closely connected with that of the shotcreting lining technique. This paper presents the results of modelling test for analysing shorcrete rebound, shotcreting time and finding void spaces using the aretificial tunnel wall which consist of wood to evaluate the site applicability of lattice girders for tunnel support. Test results indicate that in case of using lattice girders as a tunnel support material, shotcrete rebound, shotcreting time and occurrence of void spaces are relatively reduced comparing to H-beam steel rib. And we can get some informations ths lattice girder has various advantages when we use it as one of tunnel support materials.

  • PDF

An Experimental Study on Load Bearing Capacity of Lattice Girder as a Steel Support in Tunnelling (터널 지보재로서 격자지보의 하중지지력에 관한 실험적 연구)

  • 유충식;배규진
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.163-176
    • /
    • 1997
  • It has long been recognized that the H-beam steel rib has many shortcomings when used as a steel support in tunneling. One of the major shortcomings is the shotcrete shadow created behind H-beam flange which eventually reduces the load bearing capacity of shotcrete shell. In many European countries, plate girder as the H-beam steel rib has been replaced by lattice girder which has many advantages over the H-beam steel rib. Successful application of the lattice girder as a steel support requires a thorough investigation on the load bearing capacity of the lattice girder. Therefore, laboratory bending and compression tests were conducted on lattice girders with the aim of investigating the load bearing capacity of the lattice girders. The results of tests show that the load bearing capacity of laIn twice girders is higher than that of H-beams, which indicates that the lattice girder can be effectively used as a support in tunneling.

  • PDF

A development of modification program for steel fiber reinforced shotcrete during design and construction stages (강섬유 숏크리트의 설계 및 시공에 대한 문제점 및 개선방향에 대한 연구)

  • Kim, Sang-Hwan;Youn, Seung-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.48-57
    • /
    • 2009
  • The quality control of tunnel support construction is very important to maintain a long term stability of tunnel. Especially, steel fiber reinforced shotcrete should be necessary to investigate practically the condition of quality control in the construction site. In order to perform this study, the design criteria and specifications relevant to steel fiber reinforced shotcrete are reviewed. And the comparison is made between the bearing capacity of the several shotcrete layers, based on the equivalence of the bending moments. Eight tunnel construction sites are also investigated carefully to examine and analyse the characteristics of steel fiber reinforced shotcrete especially including strength and mixing condition of steel fiber. Based on the results, it is founded the items to be improved in the future. In addition, the modification program for the specifications of steel fiber reinforced shotcrete is suggested.

  • PDF

Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines

  • Kurtoglu, Ahmet Emin
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Steel girders are the structural members often used for passing long spans. Mostly being subjected to patch loading, or concentrated loading, steel girders are likely to face sudden deformation or damage e.g., web breathing. Horizontal or vertical stiffeners are employed to overcome this phenomenon. This study aims at assessing the feasibility of a machine learning method, namely the support vector machines (SVM) in predicting the patch loading resistance of longitudinally stiffened webs. A database consisting of 162 test data is utilized to develop SVM models and the model with best performance is selected for further inspection. Existing formulations proposed by other researchers are also investigated for comparison. BS5400 and other existing models (model I, model II and model III) appear to yield underestimated predictions with a large scatter; i.e., mean experimental-to-predicted ratios of 1.517, 1.092, 1.155 and 1.256, respectively; whereas the selected SVM model has high prediction accuracy with significantly less scatter. Robust nature and accurate predictions of SVM confirms its feasibility of potential use in solving complex engineering problems.

Performance Estimation of Tunnel Lining Concrete Reinforced Steel Fiber (강섬유 보강 터널 라이닝 콘크리트의 성능 평가)

  • Jeon, Chan-Ki;Kim, Su-Man;Lee, Myung-Soo;Lee, Jong-Eun;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.579-582
    • /
    • 2005
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, steel fiber reinforcement concrete(SFRC) has better crack properties than that of reinforced concrete. In this study, mechanical behaviour of a tunnel lining was examined by model tests. The model tests were carried out under various conditions taking different loading shapes, thicknesses and leakage of lining, and volume content of steel fiber. From these model test, the cracking load, the failure load, defection and cracking position and type were examined and the characteristics of deformation and failure for tunnel lining were estimated and researched.

  • PDF

Evaluation for Approximate Bending Moment Coefficients of Non-Composite Form Deck One-Way Slab considering Unequaled Elastic Deflection of Steel Beams (철골보의 부동탄성처짐을 고려한 비합성데크 일방향 슬래브의 근사적인 휨모멘트 계수 평가)

  • Kim, Ho Soo;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.373-383
    • /
    • 2006
  • In a steel structural system, noncomposite form deck one-way slab is the plate element supported by four-edged steel beams with unequaled stiffness. However, design criterion has analyzed the one-way slab as the continuous beam. Because the end beams that support the one-way slab have elastic supports t hat cause different deflections according to the support conditions and locations, the bending moments corresponding to the support ic support effect is not considered in the design criterion. Accordingly, to conduct a reasonable estimation of approximate moment coefficients considering the unequaled elastic support conditions, this study analyzes and estimates various models with varia bles for the ratios of live load to dead load and pattern arangements of live loads and span lengths. The analytical methods considering the finite three-dimensional plate element, the two-dimensional elastic support and the infinite stifnes suport are performed.