• 제목/요약/키워드: Steel sets

검색결과 131건 처리시간 0.029초

Prediction of the flexural overstrength factor for steel beams using artificial neural network

  • Guneyisi, Esra Mete;D'niell, Mario;Landolfo, Raffaele;Mermerdas, Kasim
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.215-236
    • /
    • 2014
  • The flexural behaviour of steel beams significantly affects the structural performance of the steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum bending moment and the plastic bending strength) that steel beams may experience is the key parameter affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams were formed. Nine critical prediction parameters were selected for the former while eight parameters were considered for the latter. These input variables used for the development of the prediction models are representative of the geometric properties of the sections, the mechanical properties of the material and the shear length of the steel beams. The prediction performance of the proposed NN model was also compared with the results obtained using an existing formulation derived from the gene expression modeling. The analysis of the results indicated that the proposed formulation provided a more reliable and accurate prediction capability of beam overstrength.

Selection of measurement sets in static structural identification of bridges using observability trees

  • Lozano-Galant, Jose Antonio;Nogal, Maria;Turmo, Jose;Castillo, Enrique
    • Computers and Concrete
    • /
    • 제15권5호
    • /
    • pp.771-794
    • /
    • 2015
  • This paper proposes an innovative method for selection of measurement sets in static parameter identification of concrete or steel bridges. This method is proved as a systematic tool to address the first steps of Structural System Identification procedures by observability techniques: the selection of adequate measurement sets. The observability trees show graphically how the unknown estimates are successively calculated throughout the recursive process of the observability analysis. The observability trees can be proved as an intuitive and powerful tool for measurement selection in beam bridges that can also be applied in complex structures, such as cable-stayed bridges. Nevertheless, in these structures, the strong link among structural parameters advises to assume a set of simplifications to increase the tree intuitiveness. In addition, a set of guidelines are provided to facilitate the representation of the observability trees in this kind of structures. These guidelines are applied in bridges of growing complexity to explain how the characteristics of the geometry of the structure (e.g. deck inclination, type of pylon-deck connection, or the existence of stay cables) affect the observability trees. The importance of the observability trees is justified by a statistical analysis of measurement sets randomly selected. This study shows that, in the analyzed structure, the probability of selecting an adequate measurement set with a minimum number of measurements at random is practically negligible. Furthermore, even bigger measurement sets might not provide adequate SSI of the unknown parameters. Finally, to show the potential of the observability trees, a large-scale concrete cable-stayed bridge is also analyzed. The comparison with the number of measurements required in the literature shows again the advantages of using the proposed method.

316LN 및 Cr-Mo 스테인리스강의 Monkman-Grant 파라메타 평가 (Estimation of Monkman-Grant Parameter for Type 316LN and Cr-Mo Stainless Steels)

  • 김우곤;김성호;이경용;류우석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.223-230
    • /
    • 2001
  • The Monkman-Grant (M-G) and its modified parameters were estimated for modified type 316LN and $9{\sim}12Cr-1Mo$ steels with chemical variations. Several sets of creep data were obtained by constant-load creep tests in $550-650^{\circ}C$ ranges. The relation parameters, m, $m^*$, C and $C^*$ were proposed and discussed for two alloy systems. In creep fracture mode, type 316LN steel showed domination of the intergranular fracture caused by growth and coalescence of cavities. On the other hand, the Cr-Mo steel showed transgranular fracture of the ductile type caused from softening at high temperature. In spite of the basic differences in creep fracture modes as well as creep properties, the M-G and its modified relations demonstrated linearity within the $2{\sigma}$ standard deviation. The value of the m parameter of the M-G relation was 0.90 in the 316LN steel and 0.84 in the Cr-Mo steel. The value of the $m^*$ parameter of the modified relation was 0.94 in the 316LN steel and 0.89 in Cr-Mo steel. The modified relation was superior to the M-G relation because the $m^*$ slopes almost overlapped regardless of creep testing conditions and chemical variations to the two alloy systems.

  • PDF

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

Pe-Co-Ni 분말 소결 금속과 탄소강의 이종재료간 레이저 용접부의 결함형성기구 연구 (A Study on the Formation Mechanism of Discontinuities in $CO_2$ Laser Fusion Zone of Fe-Co-Ni Sintered Segment and Carbon Steel)

  • 신민효;김태웅;박희동;이창희
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.58-67
    • /
    • 2003
  • In this study, the formation mechanism of discontinuities in the laser fusion zone of diamond saw blade was investigated. $CO_2$ laser weldings were conducted along the butt between Fe base sintered tip and carbon steel shank with sets of variable welding parameters. The effect of heat input on irregular humps, outer cavity, inner cavity and bond strengh was evaluated. The optimum heat input to have a proper humps was in the range of 10.4~$17.6kJm_{-1}$. With increasing heat input, both outer and inner cavities were reduced. The outer cavity was caused by insufficient refill of keyhole, while inner cavity was caused by trapping of bubble in molten metal. The bubble came from sintered tip and intensive vaporization at bottom tip of the keyhole. A gas formation and low melting point element vaporization were not occurred during welding. We could not find any relationship between bond strength and amount of discontinuities. Because the fracture were occurred in not only sintered tip but also carbon steel shank due to hardness distributions.

불특정 공식손상을 가진 316L 스테인리스강의 기계적 물성치 예측을 위한 다중선형회귀 적용 (Application of Multiple Linear Regression to Predict Mechanical Properties of 316L Stainless Steel with Unspecified Pit Corrosion)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.55-63
    • /
    • 2023
  • The aim of this study was to propose a multiple linear regression (MLR) equation to predict ultimate tensile strength (UTS) of 316L stainless steel with unspecified pit corrosion. Tensile specimens with pit corrosion were prepared using a potentiostatic acceleration test method. Pit corrosion was characterized by measuring ten factors using a confocal laser microscope. Data were collected from 22 tensile tests. At 85% confidence level, total pit volume, maximum pit depth, mean ratio of surface area, and mean area were significant factors showing linear relationships with UTS. The MLR equation using these three significant factors at a 85% confidence level showed considerable prediction performance for UTS. Determination coefficient (R2) was 0.903 with training and test data sets. The yield strength ratio of 316L stainless steel was found to be around 0.85. All specimens with a pit corrosion presented a yield ratio of approximately 0.85 with R2 of 0.998. Therefore, pit corrosion did not affect the yield ratio.

3차원 수치해석을 이용한 조기고강도 숏크리트 지보성능 분석 (3-Dimensional numerical analysis on support performance of early-high-strength shotcrete)

  • 김종욱;김정주;조영재;유한규
    • 한국터널지하공간학회 논문집
    • /
    • 제16권5호
    • /
    • pp.459-470
    • /
    • 2014
  • 최근 터널의 건설심도는 점차 깊어지고 길이 및 단면은 증가하는 추세를 보이고 있다. 따라서 굴착 직후 주변 지반의 지압에 대해 보다 높은 지보효과를 발휘하고 지표침하 억제효과가 있는 조기고강도 숏크리트에 대한 필요성이 증대되고 있다. 따라서 본 논문에서는 3차원 수치해석을 통해 조기고강도 숏크리트의 지보성능을 분석하여 실제 현장에서의 적용가능성을 높이고자 일반 숏크리트와 같은 지보효과를 발휘하는 조기고강도 숏크리트 라이닝의 두께를 추정하기 위해서 조기고강도 숏크리트 라이닝의 두께를 5단계로 변경하며 해석을 수행하여 지보성능을 분석하였다. 또한 숏크리트가 경화될 때까지 지반을 지지하기 위하여 설치하는 강지보재를 조기에 강도발휘가 가능한 조기고강도 숏크리트로 대체할 수 있는 가능성을 판단하였다. 수치해석 결과, 조기고강도 숏크리트는 지반조건이 불리할수록 지반변위 억제 효과가 증대되며 강지보재의 숏크리트 경화 전 지보효과를 보완할 수 있을 것으로 판단하였다.

Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network

  • Nguyen, Mai-Suong T.;Thai, Duc-Kien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.415-437
    • /
    • 2020
  • Circular concrete filled steel tube (CFST) columns have an advantage over all other sections when they are used in compression members. This paper proposes a new approach for deriving a new empirical equation to predict the axial compressive capacity of circular CFST columns using the Artificial Neural Network (ANN). The developed ANN model uses 5 input parameters that include the diameter of circular steel tube, the length of the column, the thickness of steel tube, the steel yield strength and the compressive strength of concrete. The only output parameter is the axial compressive capacity. Training and testing the developed ANN model was carried out using 219 available sets of data collected from the experimental results in the literature. An empirical equation is then proposed as an important result of this study, which is practically used to predict the axial compressive capacity of a circular CFST column. To evaluate the performance of the developed ANN model and the proposed equation, the predicted results are compared with those of the empirical equations stated in the current design codes and other models. It is shown that the proposed equation can predict the axial compressive capacity of circular CFST columns more accurately than other methods. This is confirmed by the high accuracy of a large number of existing test results. Finally, the parametric study result is analyzed for the proposed ANN equation to consider the effect of the input parameters on axial compressive strength.

약진지역에 있어서의 시간이력 해석과 UBC 규준 해석의 비교 (A Comparison of Time History Analysis to UBC-88 Requirements in a Low Seismic Zone)

  • 김희철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.90-95
    • /
    • 1991
  • The Uniform Building Code (UBC) is the most widely used requirements for earthquake resistant design in the United States. In this paper, a mid-rise steel building is analyzed by applying 12 sets of actual strong-motion earthquake data that have been scaled to acne 2B levels. The simply extrapolated ground motion displacements are used for the dynamic loads. The results of dynamic analyses for a 10-story steel building are compared with the static and dynamic analysis requirements of UBC-88. It was found that computed lateral fortes using UBC-88 static procedure differed by about 60 percent depending on whether the natural period was computed using the UBC empirical method or the UBC recommended Rayleigh's method. The lateral fortes computed from the UBC response spectra were more than 10 times greater than those computed by UBC static procedures. The lateral forces obtained from both linear and nonlinear analyses using 1989 Loma Prieta ground mot ions compared very well with UBC response spectra results.

  • PDF

다양한 방사연단 조건을 갖는 고정 및 단순지지 부채꼴형 평판 진동에 대한 경계응력특이도의 영향 (Influence of Boundary Stress Singularities on the Vibration of Clamped and Simply Supported Sectorial Plates With Various Radial Edge Conditions)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.601-613
    • /
    • 1998
  • 본 논문은 부채꼴형 평판의 원형연단이 고정되어 있거나 또는 단순지지 되어 있을 때 요각 모서리의 응력 특이도를 고려하여 자유 진동해를 최초로 구한 연구이다. Ritz방법을 이용하여 수직진동변위를 두가지 적합함수식으로 가정하였다. 본 연구에서는 부채꼴형 각도의 범위에 따른 엄밀한 진동수 및 수직진동 변위의 전형적인 등고선을 제시하였다.

  • PDF