• Title/Summary/Keyword: Steel projectile

Search Result 62, Processing Time 0.02 seconds

An experimental study on the ballistic performance of FRP-steel plates completely penetrated by a hemispherical-nosed projectile

  • Chen, Changhai;Zhu, Xi;Hou, Hailiang;Zhang, Lijun;Shen, Xiaole;Tang, Ting
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.269-288
    • /
    • 2014
  • Experiments were carried out to investigate the ballistic performance of fiber reinforced plastic(FRP)-steel plates completely penetrated by hemispherical-nosed projectiles at sub-ordnance velocities greater than their ballistic limits. The FRP-steel plate consists of a front FRP laminate and a steel backing plate. Failure mechanisms and impact energy absorptions of FRP-steel plates were analyzed and compared with FRP laminates and single steel plates. The effects of relative thickness, manufacturing method and fabric type of front composite armors as well as the joining style between front composite armors and steel backing plates on the total perforation resistance of FRP-steel plates were explored. It is found that in the case of FRP-steel plates completely penetrated by hemispherical-nosed projectiles at low velocities, the failure modes of front composite armors are slightly changed while for steel backing plates, the dominate failure modes are greatly changed due to the influence of front composite armors. The relative thickness and fabric type of front composite armors as well as the joining style of FRP-steel plates have large effects whereas the manufacturing method of front composite armors has slight effect on the total perforation resistance of FRP-steel plates.

Numerical Simulation of Steel/Kevlar Hybrid Composite Helmet Subjected to Ballistic Impact (탄도 충격을 받는 Steel/Kevlar 혼합복합재 헬멧 수치 시뮬레이션)

  • Jo, Jong Hyun;Lee, Young Shin;Jin, Hai Lan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1569-1575
    • /
    • 2012
  • In this study, ballistic impact effects on a helmet were investigated using the AUTODYN-3D program. Two types of materials were used for manufacturing the helmet: single Kevlar and Steel/Kevlar hybrid composites. Furthermore, two types of bullets were used in the simulation: steel spherical and 7.62 mm full-jacketed. In the simulation, the shape deformation of the projectile and internal energy were calculated. From the results, impact velocities above 655 m/s and 845 m/s were required to perforate the Steel/Kevlar helmet with steel spherical and 7.62 mm full-jacketed bullets, respectively. The results show that there was a large difference between the ballistic resistance of the Kevlar and Steel/Kevlar helmets. For the simulation on an NIJ-STD-0106.01 Type II helmet, a 7.62 mm fulljacketed bullet with a striking velocity of 358 m/s was used. Simulation results show that the Steel/Kevlar helmet could resist a 7.62 mm full-jacketed bullet traveling at 358 m/s.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part I: experimental investigations

  • Korucu, H.;Gulkan, P.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.595-616
    • /
    • 2011
  • Impact experiments have been carried out on concrete slabs. The first group was traditionally manufactured, densely reinforced concrete targets, and the next were ordinary Portland and calcium aluminate cement based HPSFRC (High performance steel fiber reinforced concrete) and SIFCON (Slurry infiltrated concrete) targets. All specimens were hit by anti-armor tungsten projectiles at a muzzle velocity of over 4 Mach causing destructive perforation. In Part I of this article, production and experimental procedures are described. The first group of specimens were ordinary CEM I 42.5 R cement based targets including only dense reinforcement. In the second and third groups, specimens were produced using CEM I 42.5 R cement and Calcium Aluminate Cement (CAC40) with ordinary reinforcement and steel fibers 2 percent in volume. In the fourth group, SIFCON specimens including 12 percent of steel fibers without reinforcement were tested. A high-speed camera was used to capture impact and residual velocities of the projectile. Sample tests were performed to obtain mechanical properties of the materials. In the companion Part II of this study, numerical investigations and simulations performed will be presented. Few studies exist that examine high-velocity impact effects on CAC40 based HPSFRC targets, so this investigation gives an insight for comparison of their behavior with Portland cement based and SIFCON specimens.

Modified K&C Model for Numerical Analysis of Steel-Fiber-Reinforced Concrete Structure (강섬유 보강 콘크리트 구조물의 해석을 위한 K&C모델의 보정)

  • Park, Gang-Kyu;Lee, Minjoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.85-91
    • /
    • 2021
  • This paper introduces a modified Karagozian & Case concrete model (K&C model) for the numerical analysis of a steel-fiber-reinforced concrete (SFRC) structure subjected to projectile impact. The original K&C model was calibrated to consider the effects of steel fibers accurately by modifying the strength surfaces and input parameters. Single element tests were then conducted and compared with uniaxial and triaxial compressive data to verify the modified model. With the application of a dynamic increase factor, the finite element model of the SFRC structure subjected to projectile impact was constructed. Thereafter, the applicability of the modified material model was examined by comparisons with the experimental results.

Numerical simulation of hypervelocity impacts on laminated composite plate targets using SPH method (SPH 기법을 이용한 복합 적층판의 초고속 충돌 해석)

  • Lee, Jae-Hoon;Seo, Song-Won;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.331-336
    • /
    • 2004
  • This paper is concerned with numerical simulation of hypervelocity impacts(HVIs) of a projectile on laminated composite plate targets using SPH method. A one-parameter visco-plasticity model and damage model is used to describe the HVIs response of composite materials. The numerical simulation was carried out for a steel projectile striking to aluminum plate targets and for an aluminum projectile striking to laminated graphite/epoxy (Gr/Ep) composite plate targets. Through the numerical simulation, comparison with the HVIs response of isotropic materials and composite materials is discussed.

  • PDF

A study on Effects of Parameters in the Lagrangian Code based on F.E.M. through Oblique Dual-Plates Perforation Phenomena (관통자에 의한 경사복판의 관통현상에서 유한요소법을 근간으로한 라그랑지 코드의 변수의 영향에 관한 연구)

  • Kim, Ha-youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.55-60
    • /
    • 2004
  • This study is concerned to the perforation phenomena of the oblique dual-plate by projectile. Experiment and simulation related to that was carried out. the variables considered in this phenomena include the electrolytic zinc coated steel sheet and carbon steel rod. In the former, the confirmation and projectile velocity possible phenomena of real phenomena is done, the latter, the effect of parameter such as time-step and grid space length is analized by using the three-dimensional Lagrangian explicit time-integration finite element code, HEMP. this code use the eight node hexahedral elements and in this study, Von-Mises Criteria is used as the strength model, Mie-Gruneisen is as the Equation of State. the simulation was performed by contrast with the experiment. through the calibration of the parameter of lagrangian code, reasonable result was approached.

  • PDF

Evaluation on the Impact Resistance Performance of Fiber Reinforced Concrete by High Velocity Steel Projectile Test (고속 비상체의 충격시험에 의한 섬유보강콘크리트의 내충격 성능평가)

  • Nam, Jeong-Soo;Choi, Hyeong-Gil;Kim, Young-Sun;Park, Jong-Ho;Jeong, Yong;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.389-390
    • /
    • 2009
  • Recently, building structure damage and number of lives lost by bomb terror is increasing. Therefore, in this study, present basic data for development of impact resistance performance by evaluation on the impact resistance performance of fiber reinforced concrete by high velocity steel projectile test.

  • PDF

Effect of thickness and reinforcement on concrete plates under high speed projectiles

  • Tais, Abdalla S.;Ibraheem, Omer F.;Raoof, Saad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.587-594
    • /
    • 2022
  • Behavior of concrete elements under the effect of high-speed projectiles has gain increasing interest recently. It's necessary to understand how far the concrete can absorb the effect of bullets in order to save the occupants when design security and military infrastructures. This study presents a total of 18 concrete slabs casted and tested under reinforcement ratios, 0%, 0.35% and 0.7%. Parameters interested were slab thickness, (50 mm, 100 mm, and 150 mm) and type of weapon. All specimens tested to investigate their response under the effect of attacking by two common types of weapon. In general, it was found that projectile penetration was controlled by their thickness regardless the steel reinforcement ratio. However, the steel reinforcement controls the damage.

Laminate composites behavior under quasi-static and high velocity perforation

  • Yeganeh, E. Mehrabani;Liaghat, G.H.;Pol, M.H.
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.777-796
    • /
    • 2016
  • In this paper, the behavior of woven E-glass fabric composite laminate was experimentally investigated under quasi-static indentation and high velocity impact by flat-ended, hemispherical, conical (cone angle of $37^{\circ}$ and $90^{\circ}$) and ogival (CRH of 1.5 and 2.5) cylindrical perforators. Moreover, the results are compared in order to explore the possibility of extending quasi-static indentation test results to high velocity impact test results in different characteristics such as perforation mechanisms, performance of perforators, energy absorption, friction force, etc. The effects of perforator nose shape, nose length and nose-shank connection shapes were investigated. The results showed that the quasi-static indentation test has a great ability to predict the high velocity impact behavior of the composite laminates especially in several characteristics such as perforation mechanisms, perforator performance. In both experiments, the highest performance occurs for 2.5 CRH projectile and the lowest is related to blunt projectiles. The results show that sharp perforators indicate lower values of dynamic enhancement factor and the flat-ended perforator represents the maximum dynamic enhancement factor among other perforators. Moreover, damage propagation far more occurred in high velocity impact tests then quasi-static tests. The highest damage area is mostly observed in ballistic limit of each projectile which projectile deviation strongly increases this area.

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.